/** * * \file * * \brief KS8851SNL driver for SAM. * * Copyright (c) 2013-2015 Atmel Corporation. All rights reserved. * * \asf_license_start * * \page License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. The name of Atmel may not be used to endorse or promote products derived * from this software without specific prior written permission. * * 4. This software may only be redistributed and used in connection with an * Atmel microcontroller product. * * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * \asf_license_stop * */ /* * Support and FAQ: visit Atmel Support */ /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "spi_master.h" #include "ksz8851snl.h" #include "ksz8851snl_reg.h" #include "delay.h" #include "pio.h" #include "pio_handler.h" #include "pdc.h" #include "conf_eth.h" /* Clock polarity. */ #define SPI_CLK_POLARITY 0 /* Clock phase. */ #define SPI_CLK_PHASE 1 /* SPI PDC register base. */ Pdc *g_p_spi_pdc = 0; int lUDPLoggingPrintf( const char *pcFormatString, ... ); /* Temporary buffer for PDC reception. */ uint8_t tmpbuf[1536] __attribute__ ((aligned (16))); union { uint64_t ul[2]; uint8_t uc[16]; } cmdBuf, respBuf; void dbg_add_line( const char *pcFormat, ... ); static void spi_clear_ovres( void ); /** * \brief Read register content, set bitmask and write back to register. * * \param reg the register address to modify. * \param bits_to_set bitmask to apply. */ void ksz8851_reg_setbits(uint16_t reg, uint16_t bits_to_set) { uint16_t temp; temp = ksz8851_reg_read(reg); temp |= bits_to_set; ksz8851_reg_write(reg, temp); } /** * \brief Read register content, clear bitmask and write back to register. * * \param reg the register address to modify. * \param bits_to_set bitmask to apply. */ void ksz8851_reg_clrbits(uint16_t reg, uint16_t bits_to_clr) { uint16_t temp; temp = ksz8851_reg_read(reg); temp &= ~(uint32_t) bits_to_clr; ksz8851_reg_write(reg, temp); } /** * \brief Configure the INTN interrupt. */ void configure_intn(void (*p_handler) (uint32_t, uint32_t)) { // gpio_configure_pin(KSZ8851SNL_INTN_GPIO, PIO_INPUT); // pio_set_input(PIOA, PIO_PA11_IDX, PIO_PULLUP); /* Configure PIO clock. */ pmc_enable_periph_clk(INTN_ID); /* Adjust PIO debounce filter parameters, uses 10 Hz filter. */ pio_set_debounce_filter(INTN_PIO, INTN_PIN_MSK, 10); /* Initialize PIO interrupt handlers, see PIO definition in board.h. */ pio_handler_set(INTN_PIO, INTN_ID, INTN_PIN_MSK, INTN_ATTR, p_handler); /* Enable NVIC interrupts. */ NVIC_SetPriority(INTN_IRQn, INT_PRIORITY_PIO); NVIC_EnableIRQ((IRQn_Type)INTN_ID); /* Enable PIO interrupts. */ pio_enable_interrupt(INTN_PIO, INTN_PIN_MSK); } /** * \brief Read a register value. * * \param reg the register address to modify. * * \return the register value. */ uint16_t ksz8851_reg_read(uint16_t reg) { pdc_packet_t g_pdc_spi_tx_packet; pdc_packet_t g_pdc_spi_rx_packet; uint16_t cmd = 0; uint16_t res = 0; int iTryCount = 3; while( iTryCount-- > 0 ) { uint32_t ulStatus; spi_clear_ovres(); /* Move register address to cmd bits 9-2, make 32-bit address. */ cmd = (reg << 2) & REG_ADDR_MASK; /* Last 2 bits still under "don't care bits" handled with byte enable. */ /* Select byte enable for command. */ if (reg & 2) { /* Odd word address writes bytes 2 and 3 */ cmd |= (0xc << 10); } else { /* Even word address write bytes 0 and 1 */ cmd |= (0x3 << 10); } /* Add command read code. */ cmd |= CMD_READ; cmdBuf.uc[0] = cmd >> 8; cmdBuf.uc[1] = cmd & 0xff; cmdBuf.uc[2] = CONFIG_SPI_MASTER_DUMMY; cmdBuf.uc[3] = CONFIG_SPI_MASTER_DUMMY; /* Prepare PDC transfer. */ g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc; g_pdc_spi_tx_packet.ul_size = 4; g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf; g_pdc_spi_rx_packet.ul_size = 4; pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL); pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL); gpio_set_pin_low(KSZ8851SNL_CSN_GPIO); spi_disable_interrupt( KSZ8851SNL_SPI, ~0ul ); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); for( ;; ) { ulStatus = spi_read_status( KSZ8851SNL_SPI ); if( ( ulStatus & ( SPI_SR_OVRES | SPI_SR_ENDRX ) ) != 0 ) { break; } } gpio_set_pin_high( KSZ8851SNL_CSN_GPIO ); if( ( ulStatus & SPI_SR_OVRES ) == 0 ) { break; } pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); lUDPLoggingPrintf( "ksz8851_reg_read: SPI_SR_OVRES\n" ); } res = (tmpbuf[3] << 8) | tmpbuf[2]; return res; } /** * \brief Write a register value. * * \param reg the register address to modify. * \param wrdata the new register value. */ void ksz8851_reg_write(uint16_t reg, uint16_t wrdata) { pdc_packet_t g_pdc_spi_tx_packet; pdc_packet_t g_pdc_spi_rx_packet; uint16_t cmd = 0; int iTryCount = 3; while( iTryCount-- > 0 ) { uint32_t ulStatus; spi_clear_ovres(); /* Move register address to cmd bits 9-2, make 32-bit address. */ cmd = (reg << 2) & REG_ADDR_MASK; /* Last 2 bits still under "don't care bits" handled with byte enable. */ /* Select byte enable for command. */ if (reg & 2) { /* Odd word address writes bytes 2 and 3 */ cmd |= (0xc << 10); } else { /* Even word address write bytes 0 and 1 */ cmd |= (0x3 << 10); } /* Add command write code. */ cmd |= CMD_WRITE; cmdBuf.uc[0] = cmd >> 8; cmdBuf.uc[1] = cmd & 0xff; cmdBuf.uc[2] = wrdata & 0xff; cmdBuf.uc[3] = wrdata >> 8; /* Prepare PDC transfer. */ g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc; g_pdc_spi_tx_packet.ul_size = 4; g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf; g_pdc_spi_rx_packet.ul_size = 4; pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL); pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL); gpio_set_pin_low(KSZ8851SNL_CSN_GPIO); spi_disable_interrupt( KSZ8851SNL_SPI, ~0ul ); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); for( ;; ) { ulStatus = spi_read_status( KSZ8851SNL_SPI ); if( ( ulStatus & ( SPI_SR_OVRES | SPI_SR_ENDRX ) ) != 0 ) { break; } } gpio_set_pin_high( KSZ8851SNL_CSN_GPIO ); if( ( ulStatus & SPI_SR_OVRES ) == 0 ) { break; } pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); lUDPLoggingPrintf( "ksz8851_reg_write: SPI_SR_OVRES\n" ); } } static void spi_clear_ovres( void ) { volatile uint32_t rc; rc = KSZ8851SNL_SPI->SPI_RDR; spi_read_status( KSZ8851SNL_SPI ); } /** * \brief Read internal fifo buffer. * * \param buf the buffer to store the data from the fifo buffer. * \param len the amount of data to read. */ void ksz8851_fifo_read(uint8_t *buf, uint32_t len) { pdc_packet_t g_pdc_spi_tx_packet; pdc_packet_t g_pdc_spi_rx_packet; pdc_packet_t g_pdc_spi_tx_npacket; pdc_packet_t g_pdc_spi_rx_npacket; memset( cmdBuf.uc, '\0', sizeof cmdBuf ); cmdBuf.uc[0] = FIFO_READ; spi_clear_ovres(); /* Prepare PDC transfer. */ g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc; g_pdc_spi_tx_packet.ul_size = 9; g_pdc_spi_rx_packet.ul_addr = (uint32_t) respBuf.uc; g_pdc_spi_rx_packet.ul_size = 9; g_pdc_spi_tx_npacket.ul_addr = (uint32_t) buf; g_pdc_spi_tx_npacket.ul_size = len; g_pdc_spi_rx_npacket.ul_addr = (uint32_t) buf; g_pdc_spi_rx_npacket.ul_size = len; pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, &g_pdc_spi_tx_npacket); pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, &g_pdc_spi_rx_npacket); spi_enable_interrupt(KSZ8851SNL_SPI, SPI_IER_RXBUFF | SPI_IER_OVRES); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); } /** * \brief Write internal fifo buffer. * * \param buf the buffer to send to the fifo buffer. * \param ulActualLength the total amount of data to write. * \param ulFIFOLength the size of the first pbuf to write from the pbuf chain. */ void ksz8851_fifo_write(uint8_t *buf, uint32_t ulActualLength, uint32_t ulFIFOLength) { static uint8_t frameID = 0; pdc_packet_t g_pdc_spi_tx_packet; pdc_packet_t g_pdc_spi_rx_packet; pdc_packet_t g_pdc_spi_tx_npacket; pdc_packet_t g_pdc_spi_rx_npacket; /* Prepare control word and byte count. */ cmdBuf.uc[0] = FIFO_WRITE; cmdBuf.uc[1] = frameID++ & 0x3f; cmdBuf.uc[2] = 0; cmdBuf.uc[3] = ulActualLength & 0xff; cmdBuf.uc[4] = ulActualLength >> 8; spi_clear_ovres(); /* Prepare PDC transfer. */ g_pdc_spi_tx_packet.ul_addr = (uint32_t) cmdBuf.uc; g_pdc_spi_tx_packet.ul_size = 5; g_pdc_spi_rx_packet.ul_addr = (uint32_t) respBuf.uc; g_pdc_spi_rx_packet.ul_size = 5; g_pdc_spi_tx_npacket.ul_addr = (uint32_t) buf; g_pdc_spi_tx_npacket.ul_size = ulFIFOLength; g_pdc_spi_rx_npacket.ul_addr = (uint32_t) tmpbuf; g_pdc_spi_rx_npacket.ul_size = ulFIFOLength; pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, &g_pdc_spi_tx_npacket); #if( TX_USES_RECV == 1 ) pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, &g_pdc_spi_rx_npacket); spi_enable_interrupt(KSZ8851SNL_SPI, SPI_IER_ENDRX | SPI_IER_OVRES); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); #else spi_enable_interrupt(KSZ8851SNL_SPI, SPI_SR_TXBUFE | SPI_IER_OVRES); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_TXTEN); #endif } /** * \brief Write dummy data to the internal fifo buffer. * * \param len the amount of dummy data to write. */ void ksz8851_fifo_dummy(uint32_t len) { pdc_packet_t g_pdc_spi_tx_packet; pdc_packet_t g_pdc_spi_rx_packet; /* Prepare PDC transfer. */ g_pdc_spi_tx_packet.ul_addr = (uint32_t) tmpbuf; g_pdc_spi_tx_packet.ul_size = len; g_pdc_spi_rx_packet.ul_addr = (uint32_t) tmpbuf; g_pdc_spi_rx_packet.ul_size = len; pdc_disable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTDIS | PERIPH_PTCR_TXTDIS); pdc_tx_init(g_p_spi_pdc, &g_pdc_spi_tx_packet, NULL); pdc_rx_init(g_p_spi_pdc, &g_pdc_spi_rx_packet, NULL); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); while (!(spi_read_status(KSZ8851SNL_SPI) & SPI_SR_ENDRX)) ; } void ksz8851snl_set_registers(void) { /* Init step2-4: write QMU MAC address (low, middle then high). */ ksz8851_reg_write(REG_MAC_ADDR_0, (ETHERNET_CONF_ETHADDR4 << 8) | ETHERNET_CONF_ETHADDR5); ksz8851_reg_write(REG_MAC_ADDR_2, (ETHERNET_CONF_ETHADDR2 << 8) | ETHERNET_CONF_ETHADDR3); ksz8851_reg_write(REG_MAC_ADDR_4, (ETHERNET_CONF_ETHADDR0 << 8) | ETHERNET_CONF_ETHADDR1); /* Init step5: enable QMU Transmit Frame Data Pointer Auto Increment. */ ksz8851_reg_write(REG_TX_ADDR_PTR, ADDR_PTR_AUTO_INC); /* Init step6: configure QMU transmit control register. */ ksz8851_reg_write(REG_TX_CTRL, TX_CTRL_ICMP_CHECKSUM | TX_CTRL_UDP_CHECKSUM | TX_CTRL_TCP_CHECKSUM | TX_CTRL_IP_CHECKSUM | TX_CTRL_FLOW_ENABLE | TX_CTRL_PAD_ENABLE | TX_CTRL_CRC_ENABLE ); /* Init step7: enable QMU Receive Frame Data Pointer Auto Increment. */ ksz8851_reg_write(REG_RX_ADDR_PTR, ADDR_PTR_AUTO_INC); /* Init step8: configure QMU Receive Frame Threshold for one frame. */ ksz8851_reg_write(REG_RX_FRAME_CNT_THRES, 1); /* Init step9: configure QMU receive control register1. */ ksz8851_reg_write(REG_RX_CTRL1, RX_CTRL_UDP_CHECKSUM | RX_CTRL_TCP_CHECKSUM | RX_CTRL_IP_CHECKSUM | RX_CTRL_MAC_FILTER | RX_CTRL_FLOW_ENABLE | RX_CTRL_BROADCAST | RX_CTRL_ALL_MULTICAST| RX_CTRL_UNICAST); // ksz8851_reg_write(REG_RX_CTRL1, // RX_CTRL_UDP_CHECKSUM | // RX_CTRL_TCP_CHECKSUM | // RX_CTRL_IP_CHECKSUM | // RX_CTRL_FLOW_ENABLE | // RX_CTRL_PROMISCUOUS); ksz8851_reg_write(REG_RX_CTRL2, RX_CTRL_IPV6_UDP_NOCHECKSUM | RX_CTRL_UDP_LITE_CHECKSUM | RX_CTRL_ICMP_CHECKSUM | RX_CTRL_BURST_LEN_FRAME); //#define RXQ_TWOBYTE_OFFSET (0x0200) /* Enable adding 2-byte before frame header for IP aligned with DWORD */ #warning Remember to try the above option to get a 2-byte offset /* Init step11: configure QMU receive queue: trigger INT and auto-dequeue frame. */ ksz8851_reg_write( REG_RXQ_CMD, RXQ_CMD_CNTL | RXQ_TWOBYTE_OFFSET ); /* Init step12: adjust SPI data output delay. */ ksz8851_reg_write(REG_BUS_CLOCK_CTRL, BUS_CLOCK_166 | BUS_CLOCK_DIVIDEDBY_1); /* Init step13: restart auto-negotiation. */ ksz8851_reg_setbits(REG_PORT_CTRL, PORT_AUTO_NEG_RESTART); /* Init step13.1: force link in half duplex if auto-negotiation failed. */ if ((ksz8851_reg_read(REG_PORT_CTRL) & PORT_AUTO_NEG_RESTART) != PORT_AUTO_NEG_RESTART) { ksz8851_reg_clrbits(REG_PORT_CTRL, PORT_FORCE_FULL_DUPLEX); } /* Init step14: clear interrupt status. */ ksz8851_reg_write(REG_INT_STATUS, 0xFFFF); /* Init step15: set interrupt mask. */ ksz8851_reg_write(REG_INT_MASK, INT_RX); /* Init step16: enable QMU Transmit. */ ksz8851_reg_setbits(REG_TX_CTRL, TX_CTRL_ENABLE); /* Init step17: enable QMU Receive. */ ksz8851_reg_setbits(REG_RX_CTRL1, RX_CTRL_ENABLE); } /** * \brief KSZ8851SNL initialization function. * * \return 0 on success, 1 on communication error. */ uint32_t ksz8851snl_init(void) { uint32_t count = 10; uint16_t dev_id = 0; uint8_t id_ok = 0; /* Configure the SPI peripheral. */ spi_enable_clock(KSZ8851SNL_SPI); spi_disable(KSZ8851SNL_SPI); spi_reset(KSZ8851SNL_SPI); spi_set_master_mode(KSZ8851SNL_SPI); spi_disable_mode_fault_detect(KSZ8851SNL_SPI); spi_set_peripheral_chip_select_value(KSZ8851SNL_SPI, ~(uint32_t)(1UL << KSZ8851SNL_CS_PIN)); spi_set_fixed_peripheral_select(KSZ8851SNL_SPI); //spi_disable_peripheral_select_decode(KSZ8851SNL_SPI); spi_set_clock_polarity(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, SPI_CLK_POLARITY); spi_set_clock_phase(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, SPI_CLK_PHASE); spi_set_bits_per_transfer(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, SPI_CSR_BITS_8_BIT); spi_set_baudrate_div(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, (sysclk_get_cpu_hz() / KSZ8851SNL_CLOCK_SPEED)); // spi_set_transfer_delay(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, CONFIG_SPI_MASTER_DELAY_BS, // CONFIG_SPI_MASTER_DELAY_BCT); spi_set_transfer_delay(KSZ8851SNL_SPI, KSZ8851SNL_CS_PIN, 0, 0); spi_enable(KSZ8851SNL_SPI); /* Get pointer to UART PDC register base. */ g_p_spi_pdc = spi_get_pdc_base(KSZ8851SNL_SPI); pdc_enable_transfer(g_p_spi_pdc, PERIPH_PTCR_RXTEN | PERIPH_PTCR_TXTEN); /* Control RSTN and CSN pin from the driver. */ gpio_configure_pin(KSZ8851SNL_CSN_GPIO, KSZ8851SNL_CSN_FLAGS); gpio_set_pin_high(KSZ8851SNL_CSN_GPIO); gpio_configure_pin(KSZ8851SNL_RSTN_GPIO, KSZ8851SNL_RSTN_FLAGS); /* Reset the Micrel in a proper state. */ while( count-- ) { /* Perform hardware reset with respect to the reset timing from the datasheet. */ gpio_set_pin_low(KSZ8851SNL_RSTN_GPIO); vTaskDelay(2); gpio_set_pin_high(KSZ8851SNL_RSTN_GPIO); vTaskDelay(2); /* Init step1: read chip ID. */ dev_id = ksz8851_reg_read(REG_CHIP_ID); if( ( dev_id & 0xFFF0 ) == CHIP_ID_8851_16 ) { id_ok = 1; break; } } if( id_ok != 0 ) { ksz8851snl_set_registers(); } return id_ok ? 1 : -1; } uint32_t ksz8851snl_reinit(void) { uint32_t count = 10; uint16_t dev_id = 0; uint8_t id_ok = 0; /* Reset the Micrel in a proper state. */ while( count-- ) { /* Perform hardware reset with respect to the reset timing from the datasheet. */ gpio_set_pin_low(KSZ8851SNL_RSTN_GPIO); vTaskDelay(2); gpio_set_pin_high(KSZ8851SNL_RSTN_GPIO); vTaskDelay(2); /* Init step1: read chip ID. */ dev_id = ksz8851_reg_read(REG_CHIP_ID); if( ( dev_id & 0xFFF0 ) == CHIP_ID_8851_16 ) { id_ok = 1; break; } } if( id_ok != 0 ) { ksz8851snl_set_registers(); } return id_ok ? 1 : -1; } uint32_t ksz8851snl_reset_rx( void ) { uint16_t usValue; usValue = ksz8851_reg_read(REG_RX_CTRL1); usValue &= ~( ( uint16_t ) RX_CTRL_ENABLE | RX_CTRL_FLUSH_QUEUE ); ksz8851_reg_write( REG_RX_CTRL1, usValue ); vTaskDelay( 2 ); ksz8851_reg_write( REG_RX_CTRL1, usValue | RX_CTRL_FLUSH_QUEUE ); vTaskDelay( 1 ); ksz8851_reg_write( REG_RX_CTRL1, usValue ); vTaskDelay( 1 ); ksz8851_reg_write( REG_RX_CTRL1, usValue | RX_CTRL_ENABLE ); vTaskDelay( 1 ); return ( uint32_t )usValue; } uint32_t ksz8851snl_reset_tx( void ) { uint16_t usValue; usValue = ksz8851_reg_read( REG_TX_CTRL ); usValue &= ~( ( uint16_t ) TX_CTRL_ENABLE | TX_CTRL_FLUSH_QUEUE ); ksz8851_reg_write( REG_TX_CTRL, usValue ); vTaskDelay( 2 ); ksz8851_reg_write( REG_TX_CTRL, usValue | TX_CTRL_FLUSH_QUEUE ); vTaskDelay( 1 ); ksz8851_reg_write( REG_TX_CTRL, usValue ); vTaskDelay( 1 ); ksz8851_reg_write( REG_TX_CTRL, usValue | TX_CTRL_ENABLE ); vTaskDelay( 1 ); return ( uint32_t )usValue; }