/* * Copyright (c) 2007-2008, Advanced Micro Devices, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name of Advanced Micro Devices, Inc. nor the names * of its contributors may be used to endorse or promote products * derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Some portions copyright (c) 2010-2013 Xilinx, Inc. All rights reserved. * * Xilinx, Inc. * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A * COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS * ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION. * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. * */ /* Standard includes. */ #include #include #include /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" #include "semphr.h" /* FreeRTOS+TCP includes. */ #include "FreeRTOS_IP.h" #include "FreeRTOS_Sockets.h" #include "FreeRTOS_IP_Private.h" #include "NetworkBufferManagement.h" #include "Zynq/x_emacpsif.h" #include "xparameters_ps.h" #include "xparameters.h" int phy_detected = 0; /*** IMPORTANT: Define PEEP in xemacpsif.h and sys_arch_raw.c *** to run it on a PEEP board ***/ /* Advertisement control register. */ #define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */ #define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */ #define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */ #define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */ #define ADVERTISE_100_AND_10 (ADVERTISE_10FULL | ADVERTISE_100FULL | \ ADVERTISE_10HALF | ADVERTISE_100HALF) #define ADVERTISE_100 (ADVERTISE_100FULL | ADVERTISE_100HALF) #define ADVERTISE_10 (ADVERTISE_10FULL | ADVERTISE_10HALF) #define ADVERTISE_1000 0x0300 //#define PHY_REG_00_BMCR 0x00 // Basic mode control register //#define PHY_REG_01_BMSR 0x01 // Basic mode status register //#define PHY_REG_02_PHYSID1 0x02 // PHYS ID 1 //#define PHY_REG_03_PHYSID2 0x03 // PHYS ID 2 //#define PHY_REG_04_ADVERTISE 0x04 // Advertisement control reg #define IEEE_CONTROL_REG_OFFSET 0 #define IEEE_STATUS_REG_OFFSET 1 #define IEEE_PHYSID1_OFFSET 2 #define IEEE_PHYSID2_OFFSET 3 #define IEEE_AUTONEGO_ADVERTISE_REG 4 #define IEEE_PARTNER_ABILITIES_1_REG_OFFSET 5 #define IEEE_1000_ADVERTISE_REG_OFFSET 9 #define IEEE_PARTNER_ABILITIES_3_REG_OFFSET 10 #define IEEE_COPPER_SPECIFIC_CONTROL_REG 16 #define IEEE_SPECIFIC_STATUS_REG 17 #define IEEE_COPPER_SPECIFIC_STATUS_REG_2 19 #define IEEE_CONTROL_REG_MAC 21 #define IEEE_PAGE_ADDRESS_REGISTER 22 #define IEEE_CTRL_1GBPS_LINKSPEED_MASK 0x2040 #define IEEE_CTRL_LINKSPEED_MASK 0x0040 #define IEEE_CTRL_LINKSPEED_1000M 0x0040 #define IEEE_CTRL_LINKSPEED_100M 0x2000 #define IEEE_CTRL_LINKSPEED_10M 0x0000 #define IEEE_CTRL_RESET_MASK 0x8000 #define IEEE_CTRL_AUTONEGOTIATE_ENABLE 0x1000 #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 #define IEEE_CTRL_RESET 0x9140 #define IEEE_CTRL_ISOLATE_DISABLE 0xFBFF #endif #define IEEE_STAT_AUTONEGOTIATE_CAPABLE 0x0008 #define IEEE_STAT_AUTONEGOTIATE_COMPLETE 0x0020 #define IEEE_STAT_AUTONEGOTIATE_RESTART 0x0200 #define IEEE_STAT_1GBPS_EXTENSIONS 0x0100 #define IEEE_AN1_ABILITY_MASK 0x1FE0 #define IEEE_AN3_ABILITY_MASK_1GBPS 0x0C00 #define IEEE_AN1_ABILITY_MASK_100MBPS 0x0380 #define IEEE_AN1_ABILITY_MASK_10MBPS 0x0060 #define IEEE_RGMII_TXRX_CLOCK_DELAYED_MASK 0x0030 #define IEEE_ASYMMETRIC_PAUSE_MASK 0x0800 #define IEEE_PAUSE_MASK 0x0400 #define IEEE_AUTONEG_ERROR_MASK 0x8000 #define XEMACPS_GMII2RGMII_SPEED1000_FD 0x140 #define XEMACPS_GMII2RGMII_SPEED100_FD 0x2100 #define XEMACPS_GMII2RGMII_SPEED10_FD 0x100 #define XEMACPS_GMII2RGMII_REG_NUM 0x10 /* Frequency setting */ #define SLCR_LOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x4) #define SLCR_UNLOCK_ADDR (XPS_SYS_CTRL_BASEADDR + 0x8) #define SLCR_GEM0_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x140) #define SLCR_GEM1_CLK_CTRL_ADDR (XPS_SYS_CTRL_BASEADDR + 0x144) #ifdef PEEP #define SLCR_GEM_10M_CLK_CTRL_VALUE 0x00103031 #define SLCR_GEM_100M_CLK_CTRL_VALUE 0x00103001 #define SLCR_GEM_1G_CLK_CTRL_VALUE 0x00103011 #endif #define SLCR_LOCK_KEY_VALUE 0x767B #define SLCR_UNLOCK_KEY_VALUE 0xDF0D #define SLCR_ADDR_GEM_RST_CTRL (XPS_SYS_CTRL_BASEADDR + 0x214) #define EMACPS_SLCR_DIV_MASK 0xFC0FC0FF #define EMAC0_BASE_ADDRESS 0xE000B000 #define EMAC1_BASE_ADDRESS 0xE000C000 static int detect_phy(XEmacPs *xemacpsp) { u16 id_lower, id_upper; u32 phy_addr, id; for (phy_addr = 0; phy_addr < 32; phy_addr++) { XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PHYSID1_OFFSET, &id_lower); if ((id_lower != ( u16 )0xFFFFu) && (id_lower != ( u16 )0x0u)) { XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PHYSID2_OFFSET, &id_upper); id = ( ( ( uint32_t ) id_upper ) << 16 ) | ( id_lower & 0xFFF0 ); FreeRTOS_printf( ("XEmacPs detect_phy: %04lX at address %d.\n", id, phy_addr ) ); phy_detected = phy_addr; return phy_addr; } } FreeRTOS_printf( ("XEmacPs detect_phy: No PHY detected. Assuming a PHY at address 0\n" ) ); /* default to zero */ return 0; } #ifdef PEEP unsigned get_IEEE_phy_speed(XEmacPs *xemacpsp) { u16 control; u16 status; u16 partner_capabilities; u16 partner_capabilities_1000; u16 phylinkspeed; u32 phy_addr = detect_phy(xemacpsp); XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, ADVERTISE_1000); /* Advertise PHY speed of 100 and 10 Mbps */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_100_AND_10); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control |= (IEEE_CTRL_AUTONEGOTIATE_ENABLE | IEEE_STAT_AUTONEGOTIATE_RESTART); XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control); /* Read PHY control and status registers is successful. */ XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); if ((control & IEEE_CTRL_AUTONEGOTIATE_ENABLE) && (status & IEEE_STAT_AUTONEGOTIATE_CAPABLE)) { while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) { XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); } XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PARTNER_ABILITIES_1_REG_OFFSET, &partner_capabilities); if (status & IEEE_STAT_1GBPS_EXTENSIONS) { XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_PARTNER_ABILITIES_3_REG_OFFSET, &partner_capabilities_1000); if (partner_capabilities_1000 & IEEE_AN3_ABILITY_MASK_1GBPS) return 1000; } if (partner_capabilities & IEEE_AN1_ABILITY_MASK_100MBPS) return 100; if (partner_capabilities & IEEE_AN1_ABILITY_MASK_10MBPS) return 10; xil_printf("%s: unknown PHY link speed, setting TEMAC speed to be 10 Mbps\n", __FUNCTION__); return 10; } else { /* Update TEMAC speed accordingly */ if (status & IEEE_STAT_1GBPS_EXTENSIONS) { /* Get commanded link speed */ phylinkspeed = control & IEEE_CTRL_1GBPS_LINKSPEED_MASK; switch (phylinkspeed) { case (IEEE_CTRL_LINKSPEED_1000M): return 1000; case (IEEE_CTRL_LINKSPEED_100M): return 100; case (IEEE_CTRL_LINKSPEED_10M): return 10; default: xil_printf("%s: unknown PHY link speed (%d), setting TEMAC speed to be 10 Mbps\n", __FUNCTION__, phylinkspeed); return 10; } } else { return (control & IEEE_CTRL_LINKSPEED_MASK) ? 100 : 10; } } } #else /* Zynq */ unsigned get_IEEE_phy_speed(XEmacPs *xemacpsp) { u16 temp; u16 control; u16 status; u16 partner_capabilities; #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 u32 phy_addr = XPAR_PCSPMA_SGMII_PHYADDR; #else u32 phy_addr = detect_phy(xemacpsp); #endif xil_printf("Start PHY autonegotiation \n"); #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 #else XEmacPs_PhyWrite(xemacpsp,phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 2); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, &control); control |= IEEE_RGMII_TXRX_CLOCK_DELAYED_MASK; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, control); XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &control); control |= IEEE_ASYMMETRIC_PAUSE_MASK; control |= IEEE_PAUSE_MASK; control |= ADVERTISE_100; control |= ADVERTISE_10; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, control); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, &control); control |= ADVERTISE_1000; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, control); XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_COPPER_SPECIFIC_CONTROL_REG, &control); control |= (7 << 12); /* max number of gigabit attempts */ control |= (1 << 11); /* enable downshift */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_COPPER_SPECIFIC_CONTROL_REG, control); #endif XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control |= IEEE_CTRL_AUTONEGOTIATE_ENABLE; control |= IEEE_STAT_AUTONEGOTIATE_RESTART; #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 control &= IEEE_CTRL_ISOLATE_DISABLE; #endif XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control); #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 #else XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control |= IEEE_CTRL_RESET_MASK; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control); while (1) { XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); if (control & IEEE_CTRL_RESET_MASK) continue; else break; } #endif xil_printf("Waiting for PHY to complete autonegotiation.\n"); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); while ( !(status & IEEE_STAT_AUTONEGOTIATE_COMPLETE) ) { sleep(1); #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 #else XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_COPPER_SPECIFIC_STATUS_REG_2, &temp); if (temp & IEEE_AUTONEG_ERROR_MASK) { xil_printf("Auto negotiation error \n"); } #endif XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_STATUS_REG_OFFSET, &status); } xil_printf("autonegotiation complete \n"); #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 #else XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_SPECIFIC_STATUS_REG, &partner_capabilities); #endif #if XPAR_GIGE_PCS_PMA_CORE_PRESENT == 1 xil_printf("Waiting for Link to be up; Polling for SGMII core Reg \n"); XEmacPs_PhyRead(xemacpsp, phy_addr, 5, &temp); while(!(temp & 0x8000)) { XEmacPs_PhyRead(xemacpsp, phy_addr, 5, &temp); } if((temp & 0x0C00) == 0x0800) { XEmacPs_PhyRead(xemacpsp, phy_addr, 0, &temp); return 1000; } else if((temp & 0x0C00) == 0x0400) { XEmacPs_PhyRead(xemacpsp, phy_addr, 0, &temp); return 100; } else if((temp & 0x0C00) == 0x0000) { XEmacPs_PhyRead(xemacpsp, phy_addr, 0, &temp); return 10; } else { xil_printf("get_IEEE_phy_speed(): Invalid speed bit value, Deafulting to Speed = 10 Mbps\n"); XEmacPs_PhyRead(xemacpsp, phy_addr, 0, &temp); XEmacPs_PhyWrite(xemacpsp, phy_addr, 0, 0x0100); return 10; } #else if ( ((partner_capabilities >> 14) & 3) == 2)/* 1000Mbps */ return 1000; else if ( ((partner_capabilities >> 14) & 3) == 1)/* 100Mbps */ return 100; else /* 10Mbps */ return 10; #endif } #endif unsigned configure_IEEE_phy_speed(XEmacPs *xemacpsp, unsigned speed) { u16 control; u32 phy_addr = detect_phy(xemacpsp); XEmacPs_PhyWrite(xemacpsp,phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 2); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, &control); control |= IEEE_RGMII_TXRX_CLOCK_DELAYED_MASK; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_MAC, control); XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_PAGE_ADDRESS_REGISTER, 0); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, &control); control |= IEEE_ASYMMETRIC_PAUSE_MASK; control |= IEEE_PAUSE_MASK; XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, control); XEmacPs_PhyRead(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, &control); control &= ~IEEE_CTRL_LINKSPEED_1000M; control &= ~IEEE_CTRL_LINKSPEED_100M; control &= ~IEEE_CTRL_LINKSPEED_10M; if (speed == 1000) { control |= IEEE_CTRL_LINKSPEED_1000M; } else if (speed == 100) { control |= IEEE_CTRL_LINKSPEED_100M; /* Dont advertise PHY speed of 1000 Mbps */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, 0); /* Dont advertise PHY speed of 10 Mbps */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_100); } else if (speed == 10) { control |= IEEE_CTRL_LINKSPEED_10M; /* Dont advertise PHY speed of 1000 Mbps */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_1000_ADVERTISE_REG_OFFSET, 0); /* Dont advertise PHY speed of 100 Mbps */ XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_AUTONEGO_ADVERTISE_REG, ADVERTISE_10); } XEmacPs_PhyWrite(xemacpsp, phy_addr, IEEE_CONTROL_REG_OFFSET, control | IEEE_CTRL_RESET_MASK); { volatile int wait; for (wait=0; wait < 100000; wait++); } return 0; } static void SetUpSLCRDivisors(int mac_baseaddr, int speed) { volatile u32 slcrBaseAddress; #ifndef PEEP u32 SlcrDiv0; u32 SlcrDiv1=0; u32 SlcrTxClkCntrl; #endif *(volatile unsigned int *)(SLCR_UNLOCK_ADDR) = SLCR_UNLOCK_KEY_VALUE; if ((unsigned long)mac_baseaddr == EMAC0_BASE_ADDRESS) { slcrBaseAddress = SLCR_GEM0_CLK_CTRL_ADDR; } else { slcrBaseAddress = SLCR_GEM1_CLK_CTRL_ADDR; } #ifdef PEEP if (speed == 1000) { *(volatile unsigned int *)(slcrBaseAddress) = SLCR_GEM_1G_CLK_CTRL_VALUE; } else if (speed == 100) { *(volatile unsigned int *)(slcrBaseAddress) = SLCR_GEM_100M_CLK_CTRL_VALUE; } else { *(volatile unsigned int *)(slcrBaseAddress) = SLCR_GEM_10M_CLK_CTRL_VALUE; } #else if (speed == 1000) { if ((unsigned long)mac_baseaddr == EMAC0_BASE_ADDRESS) { #ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_1000MBPS_DIV1; #endif } else { #ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_1000MBPS_DIV1; #endif } } else if (speed == 100) { if ((unsigned long)mac_baseaddr == EMAC0_BASE_ADDRESS) { #ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_100MBPS_DIV1; #endif } else { #ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_100MBPS_DIV1; #endif } } else { if ((unsigned long)mac_baseaddr == EMAC0_BASE_ADDRESS) { #ifdef XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_0_ENET_SLCR_10MBPS_DIV1; #endif } else { #ifdef XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV0 SlcrDiv0 = XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV0; SlcrDiv1 = XPAR_PS7_ETHERNET_1_ENET_SLCR_10MBPS_DIV1; #endif } } SlcrTxClkCntrl = *(volatile unsigned int *)(slcrBaseAddress); SlcrTxClkCntrl &= EMACPS_SLCR_DIV_MASK; SlcrTxClkCntrl |= (SlcrDiv1 << 20); SlcrTxClkCntrl |= (SlcrDiv0 << 8); *(volatile unsigned int *)(slcrBaseAddress) = SlcrTxClkCntrl; #endif *(volatile unsigned int *)(SLCR_LOCK_ADDR) = SLCR_LOCK_KEY_VALUE; return; } unsigned link_speed; unsigned Phy_Setup (XEmacPs *xemacpsp) { unsigned long conv_present = 0; unsigned long convspeeddupsetting = 0; unsigned long convphyaddr = 0; #ifdef XPAR_GMII2RGMIICON_0N_ETH0_ADDR convphyaddr = XPAR_GMII2RGMIICON_0N_ETH0_ADDR; conv_present = 1; #else #ifdef XPAR_GMII2RGMIICON_0N_ETH1_ADDR convphyaddr = XPAR_GMII2RGMIICON_0N_ETH1_ADDR; conv_present = 1; #endif #endif #ifdef ipconfigNIC_LINKSPEED_AUTODETECT link_speed = get_IEEE_phy_speed(xemacpsp); if (link_speed == 1000) { SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,1000); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED1000_FD; } else if (link_speed == 100) { SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,100); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED100_FD; } else { SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,10); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED10_FD; } #elif defined(ipconfigNIC_LINKSPEED1000) SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,1000); link_speed = 1000; configure_IEEE_phy_speed(xemacpsp, link_speed); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED1000_FD; sleep(1); #elif defined(ipconfigNIC_LINKSPEED100) SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,100); link_speed = 100; configure_IEEE_phy_speed(xemacpsp, link_speed); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED100_FD; sleep(1); #elif defined(ipconfigNIC_LINKSPEED10) SetUpSLCRDivisors(xemacpsp->Config.BaseAddress,10); link_speed = 10; configure_IEEE_phy_speed(xemacpsp, link_speed); convspeeddupsetting = XEMACPS_GMII2RGMII_SPEED10_FD; sleep(1); #endif if (conv_present) { XEmacPs_PhyWrite(xemacpsp, convphyaddr, XEMACPS_GMII2RGMII_REG_NUM, convspeeddupsetting); } xil_printf("link speed: %d\n", link_speed); return link_speed; }