/* * Handling of Ethernet PHY's * PHY's communicate with an EMAC either through * a Media-Independent Interface (MII), or a Reduced Media-Independent Interface (RMII). * The EMAC can poll for PHY ports on 32 different addresses. Each of the PHY ports * shall be treated independently. * */ /* Standard includes. */ #include #include #include /* FreeRTOS includes. */ #include "FreeRTOS.h" #include "task.h" #include "queue.h" #include "semphr.h" /* FreeRTOS+TCP includes. */ #include "FreeRTOS_IP.h" #include "FreeRTOS_Sockets.h" #include "phyHandling.h" #include "eventLogging.h" #define phyMIN_PHY_ADDRESS 0 #define phyMAX_PHY_ADDRESS 31 #if defined( PHY_LS_HIGH_CHECK_TIME_MS ) || defined( PHY_LS_LOW_CHECK_TIME_MS ) #warning please use the new defines with 'ipconfig' prefix #endif #ifndef ipconfigPHY_LS_HIGH_CHECK_TIME_MS /* Check if the LinkSStatus in the PHY is still high after 15 seconds of not receiving packets. */ #define ipconfigPHY_LS_HIGH_CHECK_TIME_MS 15000 #endif #ifndef ipconfigPHY_LS_LOW_CHECK_TIME_MS /* Check if the LinkSStatus in the PHY is still low every second. */ #define ipconfigPHY_LS_LOW_CHECK_TIME_MS 1000 #endif /* Naming and numbering of basic PHY registers. */ #define phyREG_00_BMCR 0x00u /* Basic Mode Control Register. */ #define phyREG_01_BMSR 0x01u /* Basic Mode Status Register. */ #define phyREG_02_PHYSID1 0x02u /* PHYS ID 1 */ #define phyREG_03_PHYSID2 0x03u /* PHYS ID 2 */ #define phyREG_04_ADVERTISE 0x04u /* Advertisement control reg */ /* Naming and numbering of extended PHY registers. */ #define PHYREG_10_PHYSTS 0x10u /* 16 PHY status register Offset */ #define phyREG_19_PHYCR 0x19u /* 25 RW PHY Control Register */ #define phyREG_1F_PHYSPCS 0x1Fu /* 31 RW PHY Special Control Status */ /* Bit fields for 'phyREG_00_BMCR', the 'Basic Mode Control Register'. */ #define phyBMCR_FULL_DUPLEX 0x0100u /* Full duplex. */ #define phyBMCR_AN_RESTART 0x0200u /* Auto negotiation restart. */ #define phyBMCR_AN_ENABLE 0x1000u /* Enable auto negotiation. */ #define phyBMCR_SPEED_100 0x2000u /* Select 100Mbps. */ #define phyBMCR_RESET 0x8000u /* Reset the PHY. */ /* Bit fields for 'phyREG_19_PHYCR', the 'PHY Control Register'. */ #define PHYCR_MDIX_EN 0x8000u /* Enable Auto MDIX. */ #define PHYCR_MDIX_FORCE 0x4000u /* Force MDIX crossed. */ #define phyBMSR_AN_COMPLETE 0x0020u /* Auto-Negotiation process completed */ #define phyBMSR_LINK_STATUS 0x0004u #define phyPHYSTS_LINK_STATUS 0x0001u /* PHY Link mask */ #define phyPHYSTS_SPEED_STATUS 0x0002u /* PHY Speed mask */ #define phyPHYSTS_DUPLEX_STATUS 0x0004u /* PHY Duplex mask */ /* Bit fields for 'phyREG_1F_PHYSPCS 001 = 10BASE-T half-duplex 101 = 10BASE-T full-duplex 010 = 100BASE-TX half-duplex 110 = 100BASE-TX full-duplex */ #define phyPHYSPCS_SPEED_MASK 0x000Cu #define phyPHYSPCS_SPEED_10 0x0004u #define phyPHYSPCS_FULL_DUPLEX 0x0010u /* * Description of all capabilities that can be advertised to * the peer (usually a switch or router). */ #define phyADVERTISE_CSMA 0x0001u /* Only selector supported. */ #define phyADVERTISE_10HALF 0x0020u /* Try for 10mbps half-duplex. */ #define phyADVERTISE_10FULL 0x0040u /* Try for 10mbps full-duplex. */ #define phyADVERTISE_100HALF 0x0080u /* Try for 100mbps half-duplex. */ #define phyADVERTISE_100FULL 0x0100u /* Try for 100mbps full-duplex. */ #define phyADVERTISE_ALL ( phyADVERTISE_10HALF | phyADVERTISE_10FULL | \ phyADVERTISE_100HALF | phyADVERTISE_100FULL ) /* Send a reset commando to a set of PHY-ports. */ static uint32_t xPhyReset( EthernetPhy_t *pxPhyObject, uint32_t ulPhyMask ); static BaseType_t xHas_1F_PHYSPCS( uint32_t ulPhyID ) { BaseType_t xResult; switch( ulPhyID ) { case PHY_ID_LAN8720: case PHY_ID_LAN8742A: case PHY_ID_KSZ8041: /* case PHY_ID_KSZ8051: // same ID as 8041 case PHY_ID_KSZ8081: // same ID as 8041 */ case PHY_ID_KSZ8863: default: /* Most PHY's have a 1F_PHYSPCS */ xResult = pdTRUE; break; case PHY_ID_DP83848I: xResult = pdFALSE; break; } return xResult; } /*-----------------------------------------------------------*/ static BaseType_t xHas_19_PHYCR( uint32_t ulPhyID ) { BaseType_t xResult; switch( ulPhyID ) { case PHY_ID_LAN8742A: case PHY_ID_DP83848I: xResult = pdTRUE; break; default: /* Most PHY's do not have a 19_PHYCR */ xResult = pdFALSE; break; } return xResult; } /*-----------------------------------------------------------*/ /* Initialise the struct and assign a PHY-read and -write function. */ void vPhyInitialise( EthernetPhy_t *pxPhyObject, xApplicationPhyReadHook_t fnPhyRead, xApplicationPhyWriteHook_t fnPhyWrite ) { memset( ( void * )pxPhyObject, '\0', sizeof( *pxPhyObject ) ); pxPhyObject->fnPhyRead = fnPhyRead; pxPhyObject->fnPhyWrite = fnPhyWrite; } /*-----------------------------------------------------------*/ /* Discover all PHY's connected by polling 32 indexes ( zero-based ) */ BaseType_t xPhyDiscover( EthernetPhy_t *pxPhyObject ) { BaseType_t xPhyAddress; pxPhyObject->xPortCount = 0; for( xPhyAddress = phyMIN_PHY_ADDRESS; xPhyAddress <= phyMAX_PHY_ADDRESS; xPhyAddress++ ) { uint32_t ulLowerID; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_03_PHYSID2, &ulLowerID ); /* A valid PHY id can not be all zeros or all ones. */ if( ( ulLowerID != ( uint16_t )~0u ) && ( ulLowerID != ( uint16_t )0u ) ) { uint32_t ulUpperID; uint32_t ulPhyID; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_02_PHYSID1, &ulUpperID ); ulPhyID = ( ( ( uint32_t ) ulUpperID ) << 16 ) | ( ulLowerID & 0xFFF0 ); pxPhyObject->ucPhyIndexes[ pxPhyObject->xPortCount ] = xPhyAddress; pxPhyObject->ulPhyIDs[ pxPhyObject->xPortCount ] = ulPhyID; pxPhyObject->xPortCount++; /* See if there is more storage space. */ if( pxPhyObject->xPortCount == ipconfigPHY_MAX_PORTS ) { break; } } } if( pxPhyObject->xPortCount > 0 ) { FreeRTOS_printf( ( "PHY ID %lX\n", pxPhyObject->ulPhyIDs[ 0 ] ) ); eventLogAdd( "PHY ID 0x%lX", pxPhyObject->ulPhyIDs[ 0 ] ); } return pxPhyObject->xPortCount; } /*-----------------------------------------------------------*/ /* Send a reset commando to a set of PHY-ports. */ static uint32_t xPhyReset( EthernetPhy_t *pxPhyObject, uint32_t ulPhyMask ) { uint32_t ulDoneMask, ulConfig; TickType_t xRemainingTime; TimeOut_t xTimer; BaseType_t xPhyIndex; /* A bit-mask ofPHY ports that are ready. */ ulDoneMask = 0ul; /* Set the RESET bits high. */ for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Read Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig | phyBMCR_RESET ); } xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( 1000UL ); vTaskSetTimeOutState( &xTimer ); /* The reset should last less than a second. */ for( ;; ) { for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); if( ( ulConfig & phyBMCR_RESET ) == 0 ) { FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET %d ready\n", (int)xPhyIndex ) ); ulDoneMask |= ( 1ul << xPhyIndex ); } } if( ulDoneMask == ulPhyMask ) { break; } if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE ) { FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) ); break; } } /* Clear the reset bits. */ for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulConfig & ~phyBMCR_RESET ); } vTaskDelay( pdMS_TO_TICKS( 50ul ) ); eventLogAdd( "PHY reset %d ports", (int)pxPhyObject->xPortCount ); return ulDoneMask; } /*-----------------------------------------------------------*/ BaseType_t xPhyConfigure( EthernetPhy_t *pxPhyObject, const PhyProperties_t *pxPhyProperties ) { uint32_t ulConfig, ulAdvertise; BaseType_t xPhyIndex; if( pxPhyObject->xPortCount < 1 ) { FreeRTOS_printf( ( "xPhyResetAll: No PHY's detected.\n" ) ); return -1; } /* The expected ID for the 'LAN8742A' is 0x0007c130. */ /* The expected ID for the 'LAN8720' is 0x0007c0f0. */ /* The expected ID for the 'DP83848I' is 0x20005C90. */ /* Set advertise register. */ if( ( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_AUTO ) && ( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_AUTO ) ) { ulAdvertise = phyADVERTISE_CSMA | phyADVERTISE_ALL; /* Reset auto-negotiation capability. */ } else { ulAdvertise = phyADVERTISE_CSMA; if( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_AUTO ) { if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_100FULL; } else { ulAdvertise |= phyADVERTISE_10HALF | phyADVERTISE_100HALF; } } else if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_AUTO ) { if( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_10 ) { ulAdvertise |= phyADVERTISE_10FULL | phyADVERTISE_10HALF; } else { ulAdvertise |= phyADVERTISE_100FULL | phyADVERTISE_100HALF; } } else if( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_100 ) { if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_100FULL; } else { ulAdvertise |= phyADVERTISE_100HALF; } } else { if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_FULL ) { ulAdvertise |= phyADVERTISE_10FULL; } else { ulAdvertise |= phyADVERTISE_10HALF; } } } /* Send a reset commando to a set of PHY-ports. */ xPhyReset( pxPhyObject, xPhyGetMask( pxPhyObject ) ); for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ]; /* Write advertise register. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, ulAdvertise ); /* AN_EN AN1 AN0 Forced Mode 0 0 0 10BASE-T, Half-Duplex 0 0 1 10BASE-T, Full-Duplex 0 1 0 100BASE-TX, Half-Duplex 0 1 1 100BASE-TX, Full-Duplex AN_EN AN1 AN0 Advertised Mode 1 0 0 10BASE-T, Half/Full-Duplex 1 0 1 100BASE-TX, Half/Full-Duplex 1 1 0 10BASE-T Half-Duplex 100BASE-TX, Half-Duplex 1 1 1 10BASE-T, Half/Full-Duplex 100BASE-TX, Half/Full-Duplex */ /* Read Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_00_BMCR, &ulConfig ); ulConfig &= ~( phyBMCR_SPEED_100 | phyBMCR_FULL_DUPLEX ); ulConfig |= phyBMCR_AN_ENABLE; if( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_100 ) { ulConfig |= phyBMCR_SPEED_100; } else if( pxPhyProperties->ucSpeed == ( uint8_t )PHY_SPEED_10 ) { ulConfig &= ~phyBMCR_SPEED_100; } if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_FULL ) { ulConfig |= phyBMCR_FULL_DUPLEX; } else if( pxPhyProperties->ucDuplex == ( uint8_t )PHY_DUPLEX_HALF ) { ulConfig &= ~phyBMCR_FULL_DUPLEX; } if( xHas_19_PHYCR( ulPhyID ) ) { uint32_t ulPhyControl; /* Read PHY Control register. */ pxPhyObject->fnPhyRead( xPhyAddress, phyREG_19_PHYCR, &ulPhyControl ); /* Clear bits which might get set: */ ulPhyControl &= ~( PHYCR_MDIX_EN|PHYCR_MDIX_FORCE ); if( pxPhyProperties->ucMDI_X == PHY_MDIX_AUTO ) { ulPhyControl |= PHYCR_MDIX_EN; } else if( pxPhyProperties->ucMDI_X == PHY_MDIX_CROSSED ) { /* Force direct link = Use crossed RJ45 cable. */ ulPhyControl &= ~PHYCR_MDIX_FORCE; } else { /* Force crossed link = Use direct RJ45 cable. */ ulPhyControl |= PHYCR_MDIX_FORCE; } /* update PHY Control Register. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_19_PHYCR, ulPhyControl ); } FreeRTOS_printf( ( "+TCP: advertise: %04lX config %04lX\n", ulAdvertise, ulConfig ) ); eventLogAdd( "adv: %04lX config %04lX", ulAdvertise, ulConfig ); } /* Keep these values for later use. */ pxPhyObject->ulBCRValue = ulConfig; pxPhyObject->ulACRValue = ulAdvertise; return 0; } /*-----------------------------------------------------------*/ BaseType_t xPhyFixedValue( EthernetPhy_t *pxPhyObject, uint32_t ulPhyMask ) { BaseType_t xPhyIndex; uint32_t ulValue, ulBitMask = ( uint32_t )1u; ulValue = ( uint32_t )0u; if( pxPhyObject->xPhyPreferences.ucDuplex == PHY_DUPLEX_FULL ) { ulValue |= phyBMCR_FULL_DUPLEX; } if( pxPhyObject->xPhyPreferences.ucSpeed == PHY_SPEED_100 ) { ulValue |= phyBMCR_SPEED_100; } for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { if( ( ulPhyMask & ulBitMask ) != 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Enable Auto-Negotiation. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, ulValue ); } } return 0; } /*-----------------------------------------------------------*/ BaseType_t xPhyStartAutoNegotiation( EthernetPhy_t *pxPhyObject, uint32_t ulPhyMask ) { uint32_t xPhyIndex, ulDoneMask, ulBitMask; uint32_t ulPHYLinkStatus, ulRegValue; TickType_t xRemainingTime; TimeOut_t xTimer; if( ulPhyMask == ( uint32_t )0u ) { return 0; } for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++ ) { if( ( ulPhyMask & ( 1lu << xPhyIndex ) ) != 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; /* Enable Auto-Negotiation. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_04_ADVERTISE, pxPhyObject->ulACRValue); pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue | phyBMCR_AN_RESTART ); } } eventLogAdd( "AN start" ); xRemainingTime = ( TickType_t ) pdMS_TO_TICKS( 3000UL ); vTaskSetTimeOutState( &xTimer ); ulDoneMask = 0; /* Wait until the auto-negotiation will be completed */ for( ;; ) { ulBitMask = ( uint32_t )1u; for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { if( ( ulPhyMask & ulBitMask ) != 0lu ) { if( ( ulDoneMask & ulBitMask ) == 0lu ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue ); if( ( ulRegValue & phyBMSR_AN_COMPLETE ) != 0 ) { ulDoneMask |= ulBitMask; } } } } if( ulPhyMask == ulDoneMask ) { break; } if( xTaskCheckForTimeOut( &xTimer, &xRemainingTime ) != pdFALSE ) { FreeRTOS_printf( ( "xPhyReset: phyBMCR_RESET timed out ( done 0x%02lX )\n", ulDoneMask ) ); eventLogAdd( "ANtimed out"); break; } } eventLogAdd( "AN done %02lX / %02lX", ulDoneMask, ulPhyMask ); if( ulDoneMask != ( uint32_t)0u ) { ulBitMask = ( uint32_t )1u; pxPhyObject->ulLinkStatusMask &= ~( ulDoneMask ); for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; uint32_t ulPhyID = pxPhyObject->ulPhyIDs[ xPhyIndex ]; if( ( ulDoneMask & ulBitMask ) == ( uint32_t )0u ) { continue; } /* Clear the 'phyBMCR_AN_RESTART' bit. */ pxPhyObject->fnPhyWrite( xPhyAddress, phyREG_00_BMCR, pxPhyObject->ulBCRValue ); pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulRegValue); if( ( ulRegValue & phyBMSR_LINK_STATUS ) != 0 ) { ulPHYLinkStatus |= phyBMSR_LINK_STATUS; pxPhyObject->ulLinkStatusMask |= ulBitMask; } else { ulPHYLinkStatus &= ~( phyBMSR_LINK_STATUS ); } if( xHas_1F_PHYSPCS( ulPhyID ) ) { /* 31 RW PHY Special Control Status */ uint32_t ulControlStatus; pxPhyObject->fnPhyRead( xPhyAddress, phyREG_1F_PHYSPCS, &ulControlStatus); ulRegValue = 0; if( ( ulControlStatus & phyPHYSPCS_FULL_DUPLEX ) != 0 ) { ulRegValue |= phyPHYSTS_DUPLEX_STATUS; } if( ( ulControlStatus & phyPHYSPCS_SPEED_MASK ) == phyPHYSPCS_SPEED_10 ) { ulRegValue |= phyPHYSTS_SPEED_STATUS; } } else { /* Read the result of the auto-negotiation. */ pxPhyObject->fnPhyRead( xPhyAddress, PHYREG_10_PHYSTS, &ulRegValue); } FreeRTOS_printf( ( ">> Autonego ready: %08lx: %s duplex %u mbit %s status\n", ulRegValue, ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) ? "full" : "half", ( ulRegValue & phyPHYSTS_SPEED_STATUS ) ? 10 : 100, ( ( ulPHYLinkStatus |= phyBMSR_LINK_STATUS ) != 0) ? "high" : "low" ) ); eventLogAdd( "%s duplex %u mbit %s st", ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) ? "full" : "half", ( ulRegValue & phyPHYSTS_SPEED_STATUS ) ? 10 : 100, ( ( ulPHYLinkStatus |= phyBMSR_LINK_STATUS ) != 0) ? "high" : "low" ); { uint32_t regs[4]; int i,j; int address = 0x10; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { pxPhyObject->fnPhyRead( xPhyAddress, address, regs + j ); address++; } eventLogAdd("%04lX %04lX %04lX %04lX", regs[0], regs[1], regs[2], regs[3]); } } if( ( ulRegValue & phyPHYSTS_DUPLEX_STATUS ) != ( uint32_t )0u ) { pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_FULL; } else { pxPhyObject->xPhyProperties.ucDuplex = PHY_DUPLEX_HALF; } if( ( ulRegValue & phyPHYSTS_SPEED_STATUS ) != 0 ) { pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_10; } else { pxPhyObject->xPhyProperties.ucSpeed = PHY_SPEED_100; } } } /* if( ulDoneMask != ( uint32_t)0u ) */ return 0; } /*-----------------------------------------------------------*/ BaseType_t xPhyCheckLinkStatus( EthernetPhy_t *pxPhyObject, BaseType_t xHadReception ) { uint32_t ulStatus, ulBitMask = 1u; BaseType_t xPhyIndex; BaseType_t xNeedCheck = pdFALSE; if( xHadReception > 0 ) { /* A packet was received. No need to check for the PHY status now, but set a timer to check it later on. */ vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) ); pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS ); } else if( xTaskCheckForTimeOut( &( pxPhyObject->xLinkStatusTimer ), &( pxPhyObject->xLinkStatusRemaining ) ) != pdFALSE ) { for( xPhyIndex = 0; xPhyIndex < pxPhyObject->xPortCount; xPhyIndex++, ulBitMask <<= 1 ) { BaseType_t xPhyAddress = pxPhyObject->ucPhyIndexes[ xPhyIndex ]; if( pxPhyObject->fnPhyRead( xPhyAddress, phyREG_01_BMSR, &ulStatus ) == 0 ) { if( !!( pxPhyObject->ulLinkStatusMask & ulBitMask ) != !!( ulStatus & phyBMSR_LINK_STATUS ) ) { if( ( ulStatus & phyBMSR_LINK_STATUS ) != 0 ) { pxPhyObject->ulLinkStatusMask |= ulBitMask; } else { pxPhyObject->ulLinkStatusMask &= ~( ulBitMask ); } FreeRTOS_printf( ( "xPhyCheckLinkStatus: PHY LS now %02lX\n", pxPhyObject->ulLinkStatusMask ) ); eventLogAdd( "PHY LS now %02lX", pxPhyObject->ulLinkStatusMask ); xNeedCheck = pdTRUE; } } } vTaskSetTimeOutState( &( pxPhyObject->xLinkStatusTimer ) ); if( ( pxPhyObject->ulLinkStatusMask & phyBMSR_LINK_STATUS ) != 0 ) { pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_HIGH_CHECK_TIME_MS ); } else { pxPhyObject->xLinkStatusRemaining = pdMS_TO_TICKS( ipconfigPHY_LS_LOW_CHECK_TIME_MS ); } } return xNeedCheck; } /*-----------------------------------------------------------*/