//============================================================================ // Name : riscv-bldc.cpp // Author : Eyck Jentzsch // Version : // Copyright : Your copyright notice // Description : Hello World in C++, Ansi-style //============================================================================ #include "riscv-bldc.h" #include "delay.h" #include "bsp.h" #include "plic/plic_driver.h" #include #include #include "hifive1_io.h" volatile uint32_t nextCommutationStep=0; /* commutation blocks * 1 2 3 4 5 6 * U 0 z +1 +1 z 0 * V +1 +1 z 0 0 z * W z 0 0 z +1 +1 */ std::array driveTable { //! Drive pattern for commutation, CW rotation ((1 << VH) | (1 << UL)), //1 ((1 << VH) | (1 << WL)), //2 ((1 << UH) | (1 << WL)), //3 ((1 << UH) | (1 << VL)), //4 ((1 << WH) | (1 << VL)), //5 ((1 << WH) | (1 << UL)) //6 }; std::array senseTable { //! channels to sense during the applied pattern SENSW_N, //1 SENSU_P, //2 SENSV_N, //3 SENSW_P, //4 SENSU_N, //5 SENSV_P //6 }; bool ccw=false; typedef void (*function_ptr_t) (void); //! Instance data for the PLIC. plic_instance_t g_plic; std::array g_ext_interrupt_handlers; /*! \brief external interrupt handler * * routes the peripheral interrupts to the the respective handler * */ extern "C" void handle_m_ext_interrupt() { plic_source int_num = PLIC_claim_interrupt(&g_plic); if ((int_num >=1 ) && (int_num < PLIC_NUM_INTERRUPTS)) g_ext_interrupt_handlers[int_num](); //else // exit(1 + (uintptr_t) int_num); PLIC_complete_interrupt(&g_plic, int_num); } /*! \brief mtime interval interrupt * */ extern "C" void handle_m_time_interrupt(){ clear_csr(mie, MIP_MTIP); // Reset the timer for 3s in the future. // This also clears the existing timer interrupt. volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME); volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP); uint64_t now = *mtime; uint64_t then = now + RTC_FREQ; *mtimecmp = then; // Re-enable the timer interrupt. set_csr(mie, MIP_MTIP); } /*! \brief dummy interrupt handler * */ void no_interrupt_handler (void) {}; /*! \brief configure the per-interrupt handler * */ void configure_irq(size_t irq_num, function_ptr_t handler, unsigned char prio=1) { g_ext_interrupt_handlers[irq_num] = handler; // Priority must be set > 0 to trigger the interrupt. PLIC_set_priority(&g_plic, irq_num, prio); // Have to enable the interrupt both at the GPIO level, and at the PLIC level. PLIC_enable_interrupt(&g_plic, irq_num); } /*!\brief initializes platform * */ void platform_init(){ // configure clocks PRCI_use_hfxosc(1); // is equivalent to // init UART0 at 115200 baud auto baud_rate=115200; gpio0::output_en_reg()=0xffffffff; gpio0::iof_sel_reg()&=~IOF0_UART0_MASK; gpio0::iof_en_reg()|= IOF0_UART0_MASK; uart0::div_reg()=get_cpu_freq() / baud_rate - 1; uart0::txctrl_reg().txen=1; // init SPI gpio0::iof_sel_reg()&=~IOF0_SPI1_MASK; gpio0::iof_en_reg()|= IOF0_SPI1_MASK; qspi1::sckdiv_reg() = 8; F_CPU=PRCI_measure_mcycle_freq(20, RTC_FREQ); printf("core freq at %d Hz\n", F_CPU); // initialie interupt & trap handling write_csr(mtvec, &trap_entry); if (read_csr(misa) & (1 << ('F' - 'A'))) { // if F extension is present write_csr(mstatus, MSTATUS_FS); // allow FPU instructions without trapping write_csr(fcsr, 0); // initialize rounding mode, undefined at reset } PLIC_init(&g_plic, PLIC_CTRL_ADDR, PLIC_NUM_INTERRUPTS, PLIC_NUM_PRIORITIES); // Disable the machine & timer interrupts until setup is done. clear_csr(mie, MIP_MEIP); clear_csr(mie, MIP_MTIP); for (auto& h:g_ext_interrupt_handlers) h=no_interrupt_handler; configure_irq(40, pwm0::pwm_interrupt_handler); configure_irq(6, qspi1::spi_rx_interrupt_handler); // Set the machine timer to go off in 1 second. volatile uint64_t * mtime = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIME); volatile uint64_t * mtimecmp = (uint64_t*) (CLINT_CTRL_ADDR + CLINT_MTIMECMP); uint64_t now = *mtime; uint64_t then = now + RTC_FREQ; *mtimecmp = then; // Enable the Machine-External bit in MIE set_csr(mie, MIP_MEIP); // Enable the Machine-Timer bit in MIE set_csr(mie, MIP_MTIP); // Enable interrupts in general. set_csr(mstatus, MSTATUS_MIE); } /*! \brief reads adc channel and returns measured value * */ unsigned read_adc(unsigned channel){ std::array bytes{ uint8_t(0x06 | (channel>>2 & 0x1)), /* start bit, single ended measurement, channel[2] */ uint8_t((channel&0x3)<<6), /* channel[1:0], fill*/ 0x0 /* fill */ }; // set CS of target qspi1::csid_reg()=0; qspi1::transfer(bytes); return (bytes[1]&0xf)*256+bytes[2]; } /*! \brief waits for zero crossing and measures time until * */ unsigned short measured_zc_time(unsigned short max_delay){ long delay_us = max_delay; auto scaling_factor=0; while(delay_us/(1< std::numeric_limits::max()){ scaling_factor++; } pwm0::cfg_reg()=0; pwm0::count_reg()=0; pwm0::cfg_reg().scale = 4+scaling_factor; // divide by 16 so we get 1us per pwm clock pwm0::cmp0_reg().cmp0 = delay_us/(1<3; uint32_t adc_res=0; do{ adc_res=read_adc(channel); if((zc_neg && adc_res<2048) || (!zc_neg && adc_res>2047)) break; } while(pwm0::is_active()); uint32_t sreg = pwm0::s_reg(); pwm0::cfg_reg().enoneshot=false; return sreg*(1< multiplier={0.83, 1.0}; nextCommutationStep = 0; //Preposition. gpio0::port_reg() = (gpio0::port_reg() & ~DRIVE_MASK) | driveTable[nextCommutationStep]; //fixed_delay(STARTUP_LOCK_DELAY); pwm0::oneshot_delay(STARTUP_DELAY); next_commutation_step(); auto nextDrivePattern = driveTable[nextCommutationStep]; for (size_t i = 0; i < 12; i++){ setDrivePattern(nextDrivePattern); auto channel=senseTable[nextCommutationStep]&0x3; auto zcPolRise = senseTable[nextCommutationStep]<4; auto bemf_0=read_adc(channel); delay*=multiplier[(i/6)%multiplier.size()]; pwm0::oneshot_delay(delay); auto bemf_1=read_adc(channel); auto bemf = bemf_1>bemf_0?bemf_1-bemf_0:bemf_0-bemf_1; next_commutation_step(); nextDrivePattern = driveTable[nextCommutationStep]; } } /*! \brief closed-loop commutation to run the motor * */ void run_closed_loop(void){ auto count=0; auto zc_delay=0U; auto tmp=0U; auto nextDrivePattern = driveTable[nextCommutationStep]; for(;;){ setDrivePattern(nextDrivePattern); zc_delay=measured_zc_time(50000); next_commutation_step(); nextDrivePattern = driveTable[nextCommutationStep]; } } /*! \brief main function * */ int main() { platform_init(); printf("Starting motor\n"); start_open_loop(); printf("done...\n"); // Switch to sensor-less closed-loop commutation. run_closed_loop(); return 0; }