import "CoreDSL-Instruction-Set-Description/RISCVBase.core_desc" import "CoreDSL-Instruction-Set-Description/RV32I.core_desc" import "CoreDSL-Instruction-Set-Description/RVM.core_desc" import "CoreDSL-Instruction-Set-Description/RVC.core_desc" InstructionSet X_RB_NN extends RISCVBase { instructions { // signed saturate with pre-shift SSAT { // instruction format: R-type // opcode space: custom-1 (inst[6:2] = 01010) // opcode = 0b0101011, func3 = 0b000, func7 = encoding: sat_bit_pos[6:0] :: rs2[4:0] :: rs1[4:0] :: 0b000 :: rd[4:0] :: 0b0101011; args_disass:"{name(rd)}, {name(rs1)}, {name(rs2)}, {name(sat_bit_pos)}"; behavior: { signed val_s = (signed)X[rs1]; unsigned pre_shift = (unsigned)X[rs2]; unsigned sat_limit; signed upper_limit; signed lower_limit; if((rd != 0) && (sat_bit_pos > 0) && (sat_bit_pos <= 32) && (pre_shift < 32)) { sat_limit = (unsigned)(1 << (sat_bit_pos - 1)); upper_limit = (signed)sat_limit - 1; lower_limit = (signed)sat_limit * (-1); // important: arithmetical shift right val_s = val_s >> pre_shift; X[rd] = (val_s > upper_limit) ? (upper_limit) : ( (val_s < lower_limit) ? (lower_limit) : (val_s) ); } } } // custom packed dot product with accumulation (4x8bit) PDOT8 { // instruction format: R-type // opcode space: custom-1 (inst[6:2] = 01010) // opcode = 0b0101011, func3 = 0b001, func7 = 0b0000000 encoding: 0b0000000 :: rs2[4:0] :: rs1[4:0] :: 0b001 :: rd[4:0] :: 0b0101011; args_disass:"{name(rd)}, {name(rs1)}, {name(rs2)}"; behavior: { signed<8> op1_0 = (signed<8>)X[rs1][ 7: 0]; signed<8> op1_1 = (signed<8>)X[rs1][15: 8]; signed<8> op1_2 = (signed<8>)X[rs1][23:16]; signed<8> op1_3 = (signed<8>)X[rs1][31:24]; signed<8> op2_0 = (signed<8>)X[rs2][ 7: 0]; signed<8> op2_1 = (signed<8>)X[rs2][15: 8]; signed<8> op2_2 = (signed<8>)X[rs2][23:16]; signed<8> op2_3 = (signed<8>)X[rs2][31:24]; signed op3 = (signed)X[rd]; signed<16> mul0 = op1_0 * op2_0; signed<16> mul1 = op1_1 * op2_1; signed<16> mul2 = op1_2 * op2_2; signed<16> mul3 = op1_3 * op2_3; signed<19> sum_tmp = mul0 + mul1 + mul2 + mul3; signed<33> result = op3 + sum_tmp; if(rd != 0) X[rd] = result[31:0]; } } // standard signed multiply accumulate with 32 bit operands and 32 bit result MAC { // instruction format: R-type // opcode space: custom-1 (inst[6:2] = 01010) // opcode = 0b0101011, func3 = 0b010, func7 = 0b0000000 encoding: 0b0000000 :: rs2[4:0] :: rs1[4:0] :: 0b010 :: rd[4:0] :: 0b0101011; args_disass:"{name(rd)}, {name(rs1)}, {name(rs2)}"; behavior: { signed<65> result = (signed)X[rs1] * (signed)X[rs2] + (signed)X[rd]; if(rd != 0) X[rd] = result[31:0]; } } // WARNING: The following two HW loop instructions are not fully specified or implemented. The idea is to design the HW loops identical to the RI5CY core (current naming: CV32E40P) // See "Short Hardware Loop Setup Instructions" from RI5CY specification document from April 2019, revision 4.0: https://www.pulp-platform.org/docs/ri5cy_user_manual.pdf -> page 38, chapter 14.2 // Specific CSRs are introduced to support the HW loops (see page 17, chapter 7). // lp.setup HW loop (Short Hardware Loop Setup Instruction) LOOP { // instruction format: I-type // opcode space: custom-3 (inst[6:2] = 11110) // opcode = 0b1111011, func3 = 0b100 // uimmL[11:0] src1 100 0000 L 111 1011 -> lp.setup L,rs1, uimmL encoding: imm[11:0] :: rs1[4:0] :: 0b100 :: 0b0000 :: L[0:0] :: 0b1111011; args_disass:"{name(L)}, {name(rs1)}, {imm}"; behavior: { // L: loop level (two loop levels would be sufficient); L=0 has higher priority and is considered as the inner loop. /* lpstart[L] = PC + 4; lpend[L] = PC + ((unsigned<12>)imm << 1); lpcount[L] = rs1; */ } } // lp.setupi HW loop (Short Hardware Loop Setup Instruction with immediate value for loop count) LOOPI { // instruction format: I-type // opcode space: custom-3 (inst[6:2] = 11110) // opcode = 0b1111011, func3 = 0b101 // uimmL[11:0] uimmS[4:0] 101 0000 L 111 1011 -> lp.setupi L, uimmS, uimmL encoding: imm2[11:0] :: imm1[4:0] :: 0b101 :: 0b0000 :: L[0:0] :: 0b1111011; args_disass:"{name(L)}, {imm1}, {imm2}"; behavior: { // L: loop level (two loop levels would be sufficient); L=0 has higher priority and is considered as the inner loop. /* lpstart[L] = PC + 4; lpend[L] = PC + ((unsigned<5>)imm1 << 1); lpcount[L] = (unsigned<12>)imm2; */ } } } } Core TGC_D_XRB_NN provides RV32I, Zicsr, Zifencei, RV32M, RV32IC, X_RB_NN { architectural_state { XLEN=32; // definitions for the architecture wrapper // XL ZYXWVUTSRQPONMLKJIHGFEDCBA unsigned MISA_VAL = 0b01000000100100000011000100000100; unsigned MARCHID_VAL = 0x80000004; } }