/******************************************************************************* * Copyright (C) 2017-2024 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ // clang-format off #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace asmjit { namespace ${coreDef.name.toLowerCase()} { using namespace ::asmjit; using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::asmjit::vm_base { public: using traits = arch::traits; using super = typename iss::asmjit::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using mem_type_e = typename super::mem_type_e; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using super::get_ptr_for; using super::get_reg; using super::get_reg_for; using super::load_reg_from_mem; using super::write_reg_to_mem; using super::gen_ext; using super::gen_read_mem; using super::gen_write_mem; using super::gen_wait; using super::gen_leave; using super::gen_operation; using this_class = vm_impl; using compile_func = continuation_e (this_class::*)(virt_addr_t&, code_word_t, jit_holder&); continuation_e gen_single_inst_behavior(virt_addr_t&, unsigned int &, jit_holder&) override; void gen_block_prologue(jit_holder& jh) override; void gen_block_epilogue(jit_holder& jh) override; inline const char *name(size_t index){return traits::reg_aliases.at(index);} void gen_instr_prologue(jit_holder& jh); void gen_instr_epilogue(jit_holder& jh); inline void gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause); template::type> inline S sext(U from) { auto mask = (1ULL< instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value){} }; decoding_tree_node* root {nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> /* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */ {${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%> }}; /* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %> /* instruction ${idx}: ${instr.name} */ continuation_e __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, jit_holder& jh){ uint64_t PC = pc.val; <%instr.fields.eachLine{%>${it} <%}%>if(this->disass_enabled){ /* generate disass */ <%instr.disass.eachLine{%> ${it}<%}%> InvokeNode* call_print_disass; char* mnemonic_ptr = strdup(mnemonic.c_str()); jh.disass_collection.push_back(mnemonic_ptr); jh.cc.invoke(&call_print_disass, &print_disass, FuncSignatureT()); call_print_disass->setArg(0, jh.arch_if_ptr); call_print_disass->setArg(1, pc.val); call_print_disass->setArg(2, mnemonic_ptr); } x86::Compiler& cc = jh.cc; cc.comment(fmt::format("${instr.name}_{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, ${idx}); cc.mov(jh.pc, pc.val); pc = pc+${instr.length/8}; cc.mov(jh.next_pc, pc.val); gen_instr_prologue(jh); cc.comment("//behavior:"); /*generate behavior*/ <%instr.behavior.eachLine{%>${it} <%}%> gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, ${idx}); return returnValue; } <%}%> /**************************************************************************** * end opcode definitions ****************************************************************************/ continuation_e illegal_intruction(virt_addr_t &pc, code_word_t instr, jit_holder& jh ) { x86::Compiler& cc = jh.cc; cc.comment(fmt::format("illegal_intruction{:#x}:",pc.val).c_str()); this->gen_sync(jh, PRE_SYNC, instr_descr.size()); pc = pc + ((instr & 3) == 3 ? 4 : 2); gen_instr_prologue(jh); cc.comment("//behavior:"); gen_instr_epilogue(jh); this->gen_sync(jh, POST_SYNC, instr_descr.size()); return BRANCH; } //decoding functionality void populate_decoding_tree(decoding_tree_node* root){ //create submask for(auto instr: root->instrs){ root->submask &= instr.mask; } //put each instr according to submask&encoding into children for(auto instr: root->instrs){ bool foundMatch = false; for(auto child: root->children){ //use value as identifying trait if(child->value == (instr.value&root->submask)){ child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch){ decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); //call populate_decoding_tree for all children if(root->children.size() >1) for(auto child: root->children){ populate_decoding_tree(child); } else{ //sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } compile_func decode_instr(decoding_tree_node* node, code_word_t word){ if(!node->children.size()){ if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs){ if((instr.mask&word) == instr.value) return instr.op; } } else{ for(auto child : node->children){ if (child->value == (node->submask&word)){ return decode_instr(child, word); } } } return nullptr; } }; template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr: instr_descr){ root->instrs.push_back(instr); } populate_decoding_tree(root); } template continuation_e vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, jit_holder& jh) { enum {TRAP_ID=1<<16}; code_word_t instr = 0; phys_addr_t paddr(pc); auto *const data = (uint8_t *)&instr; if(this->core.has_mmu()) paddr = this->core.virt2phys(pc); auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' ++inst_cnt; auto f = decode_instr(root, instr); if (f == nullptr) f = &this_class::illegal_intruction; return (this->*f)(pc, instr, jh); } template void vm_impl::gen_instr_prologue(jit_holder& jh) { auto& cc = jh.cc; cc.comment("//gen_instr_prologue"); cc.inc(get_ptr_for(jh, traits::ICOUNT)); x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE); cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE)); cc.mov(get_ptr_for(jh, traits::PENDING_TRAP), current_trap_state); } template void vm_impl::gen_instr_epilogue(jit_holder& jh) { auto& cc = jh.cc; cc.comment("//gen_instr_epilogue"); x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE); cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE)); cc.cmp(current_trap_state, 0); cc.jne(jh.trap_entry); } template void vm_impl::gen_block_prologue(jit_holder& jh){ jh.pc = load_reg_from_mem(jh, traits::PC); jh.next_pc = load_reg_from_mem(jh, traits::NEXT_PC); } template void vm_impl::gen_block_epilogue(jit_holder& jh){ x86::Compiler& cc = jh.cc; cc.comment("//gen_block_epilogue"); cc.ret(jh.next_pc); cc.bind(jh.trap_entry); this->write_back(jh); this->gen_sync(jh, POST_SYNC, -1); x86::Gp current_trap_state = get_reg_for(jh, traits::TRAP_STATE); cc.mov(current_trap_state, get_ptr_for(jh, traits::TRAP_STATE)); x86::Gp current_pc = get_reg_for(jh, traits::PC); cc.mov(current_pc, get_ptr_for(jh, traits::PC)); x86::Gp instr = cc.newInt32("instr"); cc.mov(instr, 0); // FIXME:this is not correct cc.comment("//enter trap call;"); InvokeNode* call_enter_trap; cc.invoke(&call_enter_trap, &enter_trap, FuncSignatureT()); call_enter_trap->setArg(0, jh.arch_if_ptr); call_enter_trap->setArg(1, current_trap_state); call_enter_trap->setArg(2, current_pc); call_enter_trap->setArg(3, instr); x86::Gp current_next_pc = get_reg_for(jh, traits::NEXT_PC); cc.mov(current_next_pc, get_ptr_for(jh, traits::NEXT_PC)); cc.mov(jh.next_pc, current_next_pc); cc.mov(get_ptr_for(jh, traits::LAST_BRANCH), std::numeric_limits::max()); cc.ret(jh.next_pc); } template inline void vm_impl::gen_raise(jit_holder& jh, uint16_t trap_id, uint16_t cause) { auto& cc = jh.cc; cc.comment("//gen_raise"); auto tmp1 = get_reg_for(jh, traits::TRAP_STATE); cc.mov(tmp1, 0x80ULL << 24 | (cause << 16) | trap_id); cc.mov(get_ptr_for(jh, traits::TRAP_STATE), tmp1); cc.mov(jh.next_pc, std::numeric_limits::max()); } } // namespace tgc5c template <> std::unique_ptr create(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { auto ret = new ${coreDef.name.toLowerCase()}::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace asmjit } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|asmjit", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|asmjit", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new asmjit::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }) }; } } // clang-format on