/******************************************************************************* * Copyright (C) 2017, 2018 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ #ifndef _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_ #define _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_ #include "iss/arch_if.h" #include <iss/arch/traits.h> #include <iss/debugger/target_adapter_base.h> #include <iss/iss.h> #include <array> #include <memory> #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include <fmt/format.h> #include <util/logging.h> namespace iss { namespace debugger { char const* const get_csr_name(unsigned); constexpr auto csr_offset = 100U; using namespace iss::arch; using namespace iss::debugger; template <typename ARCH> class riscv_target_adapter : public target_adapter_base { public: riscv_target_adapter(server_if* srv, iss::arch_if* core) : target_adapter_base(srv) , core(core) {} /*============== Thread Control ===============================*/ /* Set generic thread */ status set_gen_thread(rp_thread_ref& thread) override; /* Set control thread */ status set_ctrl_thread(rp_thread_ref& thread) override; /* Get thread status */ status is_thread_alive(rp_thread_ref& thread, bool& alive) override; /*============= Register Access ================================*/ /* Read all registers. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) override; /* Write all registers. buf is 4-byte aligned and it is in target byte order */ status write_registers(const std::vector<uint8_t>& data) override; /* Read one register. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_single_register(unsigned int reg_no, std::vector<uint8_t>& buf, std::vector<uint8_t>& avail_buf) override; /* Write one register. buf is 4-byte aligned and it is in target byte order */ status write_single_register(unsigned int reg_no, const std::vector<uint8_t>& buf) override; /*=================== Memory Access =====================*/ /* Read memory, buf is 4-bytes aligned and it is in target byte order */ status read_mem(uint64_t addr, std::vector<uint8_t>& buf) override; /* Write memory, buf is 4-bytes aligned and it is in target byte order */ status write_mem(uint64_t addr, const std::vector<uint8_t>& buf) override; status process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) override; status thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num, size_t& num, bool& done) override; status current_thread_query(rp_thread_ref& thread) override; status offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) override; status crc_query(uint64_t addr, size_t len, uint32_t& val) override; status raw_query(std::string in_buf, std::string& out_buf) override; status threadinfo_query(int first, std::string& out_buf) override; status threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) override; status packetsize_query(std::string& out_buf) override; status add_break(break_type type, uint64_t addr, unsigned int length) override; status remove_break(break_type type, uint64_t addr, unsigned int length) override; status resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread, std::function<void(unsigned)> stop_callback) override; status target_xml_query(std::string& out_buf) override; protected: static inline constexpr addr_t map_addr(const addr_t& i) { return i; } std::string csr_xml; iss::arch_if* core; rp_thread_ref thread_idx; }; template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN != 0, unsigned>::type get_f0_offset() { return iss::arch::traits<ARCH>::F0; } template <typename ARCH> typename std::enable_if<iss::arch::traits<ARCH>::FLEN == 0, unsigned>::type get_f0_offset() { return 0; } template <typename ARCH> status riscv_target_adapter<ARCH>::set_gen_thread(rp_thread_ref& thread) { thread_idx = thread; return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::set_ctrl_thread(rp_thread_ref& thread) { thread_idx = thread; return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::is_thread_alive(rp_thread_ref& thread, bool& alive) { alive = 1; return Ok; } /* List threads. If first is non-zero then start from the first thread, * otherwise start from arg, result points to array of threads to be * filled out, result size is number of elements in the result, * num points to the actual number of threads found, done is * set if all threads are processed. */ template <typename ARCH> status riscv_target_adapter<ARCH>::thread_list_query(int first, const rp_thread_ref& arg, std::vector<rp_thread_ref>& result, size_t max_num, size_t& num, bool& done) { if(first == 0) { result.clear(); result.push_back(thread_idx); num = 1; done = true; return Ok; } else return NotSupported; } template <typename ARCH> status riscv_target_adapter<ARCH>::current_thread_query(rp_thread_ref& thread) { thread = thread_idx; return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::read_registers(std::vector<uint8_t>& data, std::vector<uint8_t>& avail) { CPPLOG(TRACE) << "reading target registers"; data.clear(); avail.clear(); const uint8_t* reg_base = core->get_regs_base_ptr(); auto start_reg = arch::traits<ARCH>::X0; for(size_t i = 0; i < 33; ++i) { if(i < arch::traits<ARCH>::RFS || i == arch::traits<ARCH>::PC) { auto reg_no = i < 32 ? start_reg + i : arch::traits<ARCH>::PC; unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no]; for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) { data.push_back(*(reg_base + offset + j)); avail.push_back(0xff); } } else { for(size_t j = 0; j < arch::traits<ARCH>::XLEN / 8; ++j) { data.push_back(0); avail.push_back(0); } } } if(iss::arch::traits<ARCH>::FLEN > 0) { auto fstart_reg = get_f0_offset<ARCH>(); for(size_t i = 0; i < 32; ++i) { auto reg_no = fstart_reg + i; auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8; unsigned offset = traits<ARCH>::reg_byte_offsets[reg_no]; for(size_t j = 0; j < reg_width; ++j) { data.push_back(*(reg_base + offset + j)); avail.push_back(0xff); } } } return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::write_registers(const std::vector<uint8_t>& data) { auto start_reg = arch::traits<ARCH>::X0; auto* reg_base = core->get_regs_base_ptr(); auto iter = data.data(); auto iter_end = data.data() + data.size(); for(size_t i = 0; i < 33 && iter < iter_end; ++i) { auto reg_width = arch::traits<ARCH>::XLEN / 8; if(i < arch::traits<ARCH>::RFS) { auto offset = traits<ARCH>::reg_byte_offsets[start_reg + i]; std::copy(iter, iter + reg_width, reg_base + offset); } else if(i == 32) { auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]; std::copy(iter, iter + reg_width, reg_base + offset); } iter += reg_width; } if(iss::arch::traits<ARCH>::FLEN > 0) { auto fstart_reg = get_f0_offset<ARCH>(); auto reg_width = arch::traits<ARCH>::FLEN / 8; for(size_t i = 0; i < 32 && iter < iter_end; ++i) { unsigned offset = traits<ARCH>::reg_byte_offsets[fstart_reg + i]; std::copy(iter, iter + reg_width, reg_base + offset); iter += reg_width; } } return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::read_single_register(unsigned int reg_no, std::vector<uint8_t>& data, std::vector<uint8_t>& avail) { if(reg_no < csr_offset) { // auto reg_size = arch::traits<ARCH>::reg_bit_width(static_cast<typename // arch::traits<ARCH>::reg_e>(reg_no))/8; auto* reg_base = core->get_regs_base_ptr(); auto reg_width = arch::traits<ARCH>::reg_bit_widths[reg_no] / 8; data.resize(reg_width); avail.resize(reg_width); auto offset = traits<ARCH>::reg_byte_offsets[reg_no]; std::copy(reg_base + offset, reg_base + offset + reg_width, data.begin()); std::fill(avail.begin(), avail.end(), 0xff); } else { typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, reg_no - csr_offset); data.resize(sizeof(typename traits<ARCH>::reg_t)); avail.resize(sizeof(typename traits<ARCH>::reg_t)); std::fill(avail.begin(), avail.end(), 0xff); core->read(a, data.size(), data.data()); std::fill(avail.begin(), avail.end(), 0xff); } return data.size() > 0 ? Ok : Err; } template <typename ARCH> status riscv_target_adapter<ARCH>::write_single_register(unsigned int reg_no, const std::vector<uint8_t>& data) { if(reg_no < csr_offset) { auto* reg_base = core->get_regs_base_ptr(); auto reg_width = arch::traits<ARCH>::reg_bit_widths[static_cast<typename arch::traits<ARCH>::reg_e>(reg_no)] / 8; auto offset = traits<ARCH>::reg_byte_offsets[reg_no]; std::copy(data.begin(), data.begin() + reg_width, reg_base + offset); } else { typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_WRITE, traits<ARCH>::CSR, reg_no - csr_offset); core->write(a, data.size(), data.data()); } return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::read_mem(uint64_t addr, std::vector<uint8_t>& data) { auto a = map_addr({iss::access_type::DEBUG_READ, iss::address_type::VIRTUAL, 0, addr}); auto f = [&]() -> status { return core->read(a, data.size(), data.data()); }; return srv->execute_syncronized(f); } template <typename ARCH> status riscv_target_adapter<ARCH>::write_mem(uint64_t addr, const std::vector<uint8_t>& data) { auto a = map_addr({iss::access_type::DEBUG_WRITE, iss::address_type::VIRTUAL, 0, addr}); auto f = [&]() -> status { return core->write(a, data.size(), data.data()); }; return srv->execute_syncronized(f); } template <typename ARCH> status riscv_target_adapter<ARCH>::process_query(unsigned int& mask, const rp_thread_ref& arg, rp_thread_info& info) { return NotSupported; } template <typename ARCH> status riscv_target_adapter<ARCH>::offsets_query(uint64_t& text, uint64_t& data, uint64_t& bss) { text = 0; data = 0; bss = 0; return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::crc_query(uint64_t addr, size_t len, uint32_t& val) { return NotSupported; } template <typename ARCH> status riscv_target_adapter<ARCH>::raw_query(std::string in_buf, std::string& out_buf) { return NotSupported; } template <typename ARCH> status riscv_target_adapter<ARCH>::threadinfo_query(int first, std::string& out_buf) { if(first) { out_buf = fmt::format("m{:x}", thread_idx.val); } else { out_buf = "l"; } return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::threadextrainfo_query(const rp_thread_ref& thread, std::string& out_buf) { std::array<char, 20> buf; memset(buf.data(), 0, 20); sprintf(buf.data(), "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0); out_buf = buf.data(); return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::packetsize_query(std::string& out_buf) { out_buf = "PacketSize=1000"; return Ok; } template <typename ARCH> status riscv_target_adapter<ARCH>::add_break(break_type type, uint64_t addr, unsigned int length) { switch(type) { default: return Err; case SW_EXEC: case HW_EXEC: { auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr}); auto eaddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr + length}); target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val); CPPLOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val << std::dec; CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Ok; } } } template <typename ARCH> status riscv_target_adapter<ARCH>::remove_break(break_type type, uint64_t addr, unsigned int length) { switch(type) { default: return Err; case SW_EXEC: case HW_EXEC: { auto saddr = map_addr({iss::access_type::FETCH, iss::address_type::PHYSICAL, 0, addr}); unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val); if(handle) { CPPLOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec; // TODO: check length of addr range target_adapter_base::bp_lut.removeEntry(handle); CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Ok; } CPPLOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Err; } } } template <typename ARCH> status riscv_target_adapter<ARCH>::resume_from_addr(bool step, int sig, uint64_t addr, rp_thread_ref thread, std::function<void(unsigned)> stop_callback) { auto* reg_base = core->get_regs_base_ptr(); auto reg_width = arch::traits<ARCH>::reg_bit_widths[arch::traits<ARCH>::PC] / 8; auto offset = traits<ARCH>::reg_byte_offsets[arch::traits<ARCH>::PC]; const uint8_t* iter = reinterpret_cast<const uint8_t*>(&addr); std::copy(iter, iter + reg_width, reg_base); return resume_from_current(step, sig, thread, stop_callback); } template <typename ARCH> status riscv_target_adapter<ARCH>::target_xml_query(std::string& out_buf) { if(!csr_xml.size()) { std::ostringstream oss; oss << "<?xml version=\"1.0\"?><!DOCTYPE feature SYSTEM \"gdb-target.dtd\"><target version=\"1.0\">\n"; if(iss::arch::traits<ARCH>::XLEN == 32) oss << "<architecture>riscv:rv32</architecture>\n"; else if(iss::arch::traits<ARCH>::XLEN == 64) oss << " <architectureriscv:rv64</architecture>\n"; oss << " <feature name=\"org.gnu.gdb.riscv.cpu\">\n"; auto reg_base_num = iss::arch::traits<ARCH>::X0; for(auto i = 0U; i < iss::arch::traits<ARCH>::RFS; ++i) { oss << " <reg name=\"x" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i] << "\" type=\"int\" regnum=\"" << i << "\"/>\n"; } oss << " <reg name=\"pc\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[iss::arch::traits<ARCH>::PC] << "\" type=\"code_ptr\" regnum=\"" << 32U << "\"/>\n"; oss << " </feature>\n"; if(iss::arch::traits<ARCH>::FLEN > 0) { oss << " <feature name=\"org.gnu.gdb.riscv.fpu\">\n"; auto reg_base_num = get_f0_offset<ARCH>(); auto type = iss::arch::traits<ARCH>::FLEN == 32 ? "ieee_single" : "riscv_double"; for(auto i = 0U; i < 32; ++i) { oss << " <reg name=\"f" << i << "\" bitsize=\"" << iss::arch::traits<ARCH>::reg_bit_widths[reg_base_num + i] << "\" type=\"" << type << "\" regnum=\"" << i + 33 << "\"/>\n"; } oss << " <reg name=\"fcsr\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"103\" type int/>\n"; oss << " <reg name=\"fflags\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"101\" type int/>\n"; oss << " <reg name=\"frm\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" regnum=\"102\" type int/>\n"; oss << " </feature>\n"; } oss << " <feature name=\"org.gnu.gdb.riscv.csr\">\n"; std::vector<uint8_t> data; std::vector<uint8_t> avail; data.resize(sizeof(typename traits<ARCH>::reg_t)); avail.resize(sizeof(typename traits<ARCH>::reg_t)); for(auto i = 0U; i < 4096; ++i) { typed_addr_t<iss::address_type::PHYSICAL> a(iss::access_type::DEBUG_READ, traits<ARCH>::CSR, i); std::fill(avail.begin(), avail.end(), 0xff); auto res = core->read(a, data.size(), data.data()); if(res == iss::Ok) { oss << " <reg name=\"" << get_csr_name(i) << "\" bitsize=\"" << iss::arch::traits<ARCH>::XLEN << "\" type=\"int\" regnum=\"" << (i + csr_offset) << "\"/>\n"; } } oss << " </feature>\n"; oss << "</target>\n"; } out_buf = csr_xml; return Ok; } } // namespace debugger } // namespace iss #endif /* _ISS_ARCH_DEBUGGER_RISCV_TARGET_ADAPTER_H_ */