//////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, MINRES Technologies GmbH // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Contributors: // eyck@minres.com - initial API and implementation // // //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include #include #include #include namespace iss { namespace CORE_DEF_NAME { using namespace iss::arch; using namespace llvm; using namespace iss::debugger; template class vm_impl : public vm::vm_base { public: using super = typename vm::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, bool dump = false); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) { debugger_if::dbg_enabled = true; if (vm::vm_base::tgt_adapter == nullptr) vm::vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm::vm_base::tgt_adapter; } protected: using vm::vm_base::get_reg_ptr; template inline llvm::ConstantInt *size(T type) { return llvm::ConstantInt::get(getContext(), llvm::APInt(32, type->getType()->getScalarSizeInBits())); } inline llvm::Value *gen_choose(llvm::Value *cond, llvm::Value *trueVal, llvm::Value *falseVal, unsigned size) const { return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size)); } std::tuple gen_single_inst_behavior(virt_addr_t &, unsigned int &, llvm::BasicBlock *) override; void gen_leave_behavior(llvm::BasicBlock *leave_blk) override; void gen_raise_trap(uint16_t trap_id, uint16_t cause); void gen_leave_trap(unsigned lvl); void gen_wait(unsigned type); void gen_trap_behavior(llvm::BasicBlock *) override; void gen_trap_check(llvm::BasicBlock *bb); inline llvm::Value *gen_reg_load(unsigned i, unsigned level = 0) { return this->builder->CreateLoad(get_reg_ptr(i), false); } inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) { llvm::Value *next_pc_v = this->builder->CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val), this->get_type(traits::XLEN)); this->builder->CreateStore(next_pc_v, get_reg_ptr(reg_num), true); } // some compile time constants // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 }; enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 }; enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) }; using this_class = vm_impl; using compile_func = std::tuple (this_class::*)(virt_addr_t &pc, code_word_t instr, llvm::BasicBlock *bb); compile_func lut[LUT_SIZE]; std::array lut_00, lut_01, lut_10; std::array lut_11; compile_func *qlut[4]; // = {lut_00, lut_01, lut_10, lut_11}; const uint32_t lutmasks[4] = {EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}; void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f) { if (pos < 0) { lut[idx] = f; } else { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f); } else { if ((valid & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f); expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f); } else { auto new_val = idx << 1; if ((value & bitmask) != 0) new_val++; expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f); } } } } inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); } uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) { if (pos >= 0) { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { lut_val = extract_fields(pos - 1, val, mask, lut_val); } else { auto new_val = lut_val << 1; if ((val & bitmask) != 0) new_val++; lut_val = extract_fields(pos - 1, val, mask, new_val); } } return lut_val; } private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct InstructionDesriptor { size_t length; uint32_t value; uint32_t mask; compile_func op; }; /* «start generated code» */ InstructionDesriptor instr_descr[0] = {}; /* «end generated code» */ /**************************************************************************** * end opcode definitions ****************************************************************************/ std::tuple illegal_intruction(virt_addr_t &pc, code_word_t instr, llvm::BasicBlock *bb) { bb->setName("illegal_instruction"); // this->gen_sync(iss::PRE_SYNC); // if(this->disass_enabled){ // /* generate console output when executing the command */ // boost::format ins_fmter("DB x%1$d"); // ins_fmter % (uint64_t)instr; // std::vector args { // this->core_ptr, // this->gen_const(64, pc.val), // this->builder->CreateGlobalStringPtr(ins_fmter.str()), // }; // this->builder->CreateCall(this->mod->getFunction("print_disass"), args); // } // pc = pc + ((instr & 3) == 3 ? 4 : 2); // this->gen_raise_trap(0, 2); // illegal instruction trap // this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */ // this->gen_trap_check(this->leave_blk); // return std::make_tuple(iss::vm::BRANCH, nullptr); // this->gen_sync(iss::PRE_SYNC); this->builder->CreateStore(this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), true), get_reg_ptr(traits::PC), true); this->builder->CreateStore( this->builder->CreateAdd(this->builder->CreateLoad(get_reg_ptr(traits::ICOUNT), true), this->gen_const(64U, 1)), get_reg_ptr(traits::ICOUNT), true); if (this->debugging_enabled()) this->gen_sync(iss::PRE_SYNC); pc = pc + ((instr & 3) == 3 ? 4 : 2); this->gen_raise_trap(0, 2); // illegal instruction trap this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */ this->gen_trap_check(this->leave_blk); return std::make_tuple(iss::vm::BRANCH, nullptr); } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, bool dump) : vm::vm_base(core, dump) { qlut[0] = lut_00.data(); qlut[1] = lut_01.data(); qlut[2] = lut_10.data(); qlut[3] = lut_11.data(); for (auto instr : instr_descr) { auto quantrant = instr.value & 0x3; expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op); } this->sync_exec = static_cast(this->sync_exec | core.needed_sync()); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, llvm::BasicBlock *this_block) { // we fetch at max 4 byte, alignment is 2 code_word_t insn = 0; iss::addr_t paddr; const typename traits::addr_t upper_bits = ~traits::PGMASK; try { uint8_t *const data = (uint8_t *)&insn; paddr = this->core.v2p(pc); if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary auto res = this->core.read(paddr, 2, data); if (res != iss::Ok) throw trap_access(1, pc.val); if ((insn & 0x3) == 0x3) { // this is a 32bit instruction res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); } } else { auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(1, pc.val); } } catch (trap_access &ta) { throw trap_access(ta.id, pc.val); } if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' // curr pc on stack typename vm_impl::processing_pc_entry addr(*this, pc, paddr); ++inst_cnt; auto lut_val = extract_fields(insn); auto f = qlut[insn & 0x3][lut_val]; if (f == nullptr) { f = &this_class::illegal_intruction; } return (this->*f)(pc, insn, this_block); } template void vm_impl::gen_leave_behavior(llvm::BasicBlock *leave_blk) { this->builder->SetInsertPoint(leave_blk); this->builder->CreateRet(this->builder->CreateLoad(get_reg_ptr(arch::traits::NEXT_PC), false)); } template void vm_impl::gen_raise_trap(uint16_t trap_id, uint16_t cause) { auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id); this->builder->CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true); } template void vm_impl::gen_leave_trap(unsigned lvl) { std::vector args{ this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, lvl)), }; this->builder->CreateCall(this->mod->getFunction("leave_trap"), args); auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8); this->builder->CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); } template void vm_impl::gen_wait(unsigned type) { std::vector args{ this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, type)), }; this->builder->CreateCall(this->mod->getFunction("wait"), args); } template void vm_impl::gen_trap_behavior(llvm::BasicBlock *trap_blk) { this->builder->SetInsertPoint(trap_blk); auto *trap_state_val = this->builder->CreateLoad(get_reg_ptr(traits::TRAP_STATE), true); std::vector args{this->core_ptr, this->adj_to64(trap_state_val), this->adj_to64(this->builder->CreateLoad(get_reg_ptr(traits::PC), false))}; this->builder->CreateCall(this->mod->getFunction("enter_trap"), args); auto *trap_addr_val = this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), false); this->builder->CreateRet(trap_addr_val); } template inline void vm_impl::gen_trap_check(llvm::BasicBlock *bb) { auto *v = this->builder->CreateLoad(get_reg_ptr(arch::traits::TRAP_STATE), true); this->gen_cond_branch(this->builder->CreateICmp( ICmpInst::ICMP_EQ, v, llvm::ConstantInt::get(getContext(), llvm::APInt(v->getType()->getIntegerBitWidth(), 0))), bb, this->trap_blk, 1); } } // namespace CORE_DEF_NAME template <> std::unique_ptr create(arch::CORE_DEF_NAME *core, unsigned short port, bool dump) { std::unique_ptr> ret = std::make_unique>(*core, dump); if (port != 0) debugger::server::run_server(ret.get(), port); return ret; } } // namespace iss