/******************************************************************************* * Copyright (C) 2021 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ #include "../fp_functions.h" #include #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace interp { namespace tgc_c { using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::interp::vm_base { public: using traits = arch::traits; using super = typename iss::interp::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; using reg_t = typename traits::reg_t; using mem_type_e = typename traits::mem_type_e; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (super::tgt_adapter == nullptr) super::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return super::tgt_adapter; } protected: using this_class = vm_impl; using compile_ret_t = virt_addr_t; using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr); inline const char *name(size_t index){return traits::reg_aliases.at(index);} compile_func decode_inst(code_word_t instr) ; virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override; // some compile time constants // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 }; enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 }; enum { LUT_SIZE = 1 << util::bit_count(static_cast(EXTR_MASK32)), LUT_SIZE_C = 1 << util::bit_count(static_cast(EXTR_MASK16)) }; std::array lut; std::array lut_00, lut_01, lut_10; std::array lut_11; struct instruction_pattern { uint32_t value; uint32_t mask; compile_func opc; }; std::array, 4> qlut; inline void raise(uint16_t trap_id, uint16_t cause){ auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id; this->template get_reg(traits::TRAP_STATE) = trap_val; this->template get_reg(traits::NEXT_PC) = std::numeric_limits::max(); } inline void leave(unsigned lvl){ this->core.leave_trap(lvl); } inline void wait(unsigned type){ this->core.wait_until(type); } template T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;} inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){ auto ret = super::template read_mem(space, addr); if(this->template get_reg(traits::TRAP_STATE)) throw 0; return ret; } inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){ auto ret = super::template read_mem(space, addr); if(this->template get_reg(traits::TRAP_STATE)) throw 0; return ret; } inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){ auto ret = super::template read_mem(space, addr); if(this->template get_reg(traits::TRAP_STATE)) throw 0; return ret; } inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){ auto ret = super::template read_mem(space, addr); if(this->template get_reg(traits::TRAP_STATE)) throw 0; return ret; } inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){ super::write_mem(space, addr, data); if(this->template get_reg(traits::TRAP_STATE)) throw 0; } inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){ super::write_mem(space, addr, data); if(this->template get_reg(traits::TRAP_STATE)) throw 0; } inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){ super::write_mem(space, addr, data); if(this->template get_reg(traits::TRAP_STATE)) throw 0; } inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){ super::write_mem(space, addr, data); if(this->template get_reg(traits::TRAP_STATE)) throw 0; } template::type> inline S sext(U from) { auto mask = (1ULL< instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */ /* instruction LUI */ {32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui}, /* instruction AUIPC */ {32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc}, /* instruction JAL */ {32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal}, /* instruction JALR */ {32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr}, /* instruction BEQ */ {32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq}, /* instruction BNE */ {32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne}, /* instruction BLT */ {32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt}, /* instruction BGE */ {32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge}, /* instruction BLTU */ {32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu}, /* instruction BGEU */ {32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu}, /* instruction LB */ {32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb}, /* instruction LH */ {32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh}, /* instruction LW */ {32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw}, /* instruction LBU */ {32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu}, /* instruction LHU */ {32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu}, /* instruction SB */ {32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb}, /* instruction SH */ {32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh}, /* instruction SW */ {32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw}, /* instruction ADDI */ {32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi}, /* instruction SLTI */ {32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti}, /* instruction SLTIU */ {32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu}, /* instruction XORI */ {32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori}, /* instruction ORI */ {32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori}, /* instruction ANDI */ {32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi}, /* instruction SLLI */ {32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli}, /* instruction SRLI */ {32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli}, /* instruction SRAI */ {32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai}, /* instruction ADD */ {32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add}, /* instruction SUB */ {32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub}, /* instruction SLL */ {32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll}, /* instruction SLT */ {32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt}, /* instruction SLTU */ {32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu}, /* instruction XOR */ {32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor}, /* instruction SRL */ {32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl}, /* instruction SRA */ {32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra}, /* instruction OR */ {32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or}, /* instruction AND */ {32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and}, /* instruction FENCE */ {32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence}, /* instruction ECALL */ {32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall}, /* instruction EBREAK */ {32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak}, /* instruction URET */ {32, 0b00000000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__uret}, /* instruction SRET */ {32, 0b00010000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__sret}, /* instruction MRET */ {32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret}, /* instruction WFI */ {32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi}, /* instruction CSRRW */ {32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw}, /* instruction CSRRS */ {32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs}, /* instruction CSRRC */ {32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc}, /* instruction CSRRWI */ {32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi}, /* instruction CSRRSI */ {32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi}, /* instruction CSRRCI */ {32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci}, /* instruction MUL */ {32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul}, /* instruction MULH */ {32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh}, /* instruction MULHSU */ {32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu}, /* instruction MULHU */ {32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu}, /* instruction DIV */ {32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div}, /* instruction DIVU */ {32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu}, /* instruction REM */ {32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem}, /* instruction REMU */ {32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu}, /* instruction CADDI4SPN */ {16, 0b0000000000000000, 0b1110000000000011, &this_class::__caddi4spn}, /* instruction CLW */ {16, 0b0100000000000000, 0b1110000000000011, &this_class::__clw}, /* instruction CSW */ {16, 0b1100000000000000, 0b1110000000000011, &this_class::__csw}, /* instruction CADDI */ {16, 0b0000000000000001, 0b1110000000000011, &this_class::__caddi}, /* instruction CNOP */ {16, 0b0000000000000001, 0b1110111110000011, &this_class::__cnop}, /* instruction CJAL */ {16, 0b0010000000000001, 0b1110000000000011, &this_class::__cjal}, /* instruction CLI */ {16, 0b0100000000000001, 0b1110000000000011, &this_class::__cli}, /* instruction CLUI */ {16, 0b0110000000000001, 0b1110000000000011, &this_class::__clui}, /* instruction CADDI16SP */ {16, 0b0110000100000001, 0b1110111110000011, &this_class::__caddi16sp}, /* instruction __reserved_clui */ {16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui}, /* instruction CSRLI */ {16, 0b1000000000000001, 0b1111110000000011, &this_class::__csrli}, /* instruction CSRAI */ {16, 0b1000010000000001, 0b1111110000000011, &this_class::__csrai}, /* instruction CANDI */ {16, 0b1000100000000001, 0b1110110000000011, &this_class::__candi}, /* instruction CSUB */ {16, 0b1000110000000001, 0b1111110001100011, &this_class::__csub}, /* instruction CXOR */ {16, 0b1000110000100001, 0b1111110001100011, &this_class::__cxor}, /* instruction COR */ {16, 0b1000110001000001, 0b1111110001100011, &this_class::__cor}, /* instruction CAND */ {16, 0b1000110001100001, 0b1111110001100011, &this_class::__cand}, /* instruction CJ */ {16, 0b1010000000000001, 0b1110000000000011, &this_class::__cj}, /* instruction CBEQZ */ {16, 0b1100000000000001, 0b1110000000000011, &this_class::__cbeqz}, /* instruction CBNEZ */ {16, 0b1110000000000001, 0b1110000000000011, &this_class::__cbnez}, /* instruction CSLLI */ {16, 0b0000000000000010, 0b1111000000000011, &this_class::__cslli}, /* instruction CLWSP */ {16, 0b0100000000000010, 0b1110000000000011, &this_class::__clwsp}, /* instruction CMV */ {16, 0b1000000000000010, 0b1111000000000011, &this_class::__cmv}, /* instruction CJR */ {16, 0b1000000000000010, 0b1111000001111111, &this_class::__cjr}, /* instruction __reserved_cmv */ {16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv}, /* instruction CADD */ {16, 0b1001000000000010, 0b1111000000000011, &this_class::__cadd}, /* instruction CJALR */ {16, 0b1001000000000010, 0b1111000001111111, &this_class::__cjalr}, /* instruction CEBREAK */ {16, 0b1001000000000010, 0b1111111111111111, &this_class::__cebreak}, /* instruction CSWSP */ {16, 0b1100000000000010, 0b1110000000000011, &this_class::__cswsp}, /* instruction DII */ {16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii}, }}; /* instruction definitions */ /* instruction 0: LUI */ compile_ret_t __lui(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 0); uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (int32_t)imm; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 0); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 1: AUIPC */ compile_ret_t __auipc(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 1); uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *PC + (int32_t)imm; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 1); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 2: JAL */ compile_ret_t __jal(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 2); uint8_t rd = ((bit_sub<7,5>(instr))); uint32_t imm = ((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else { if(rd != 0) *(X+rd) = *PC + 4; pc_assign(*NEXT_PC) = *PC + (int32_t)sext<21>(imm); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 2); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 3: JALR */ compile_ret_t __jalr(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 3); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { int32_t new_pc = (*(X+rs1) + (int16_t)sext<12>(imm)) & ~ 1; if(new_pc % traits::INSTR_ALIGNMENT) { raise(0, 0); } else { if(rd != 0) *(X+rd) = *PC + 4; pc_assign(*NEXT_PC) = new_pc & ~ 0x1; } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 3); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 4: BEQ */ compile_ret_t __beq(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 4); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(*(X+rs1) == *(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 4); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 5: BNE */ compile_ret_t __bne(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 5); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(*(X+rs1) != *(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 5); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 6: BLT */ compile_ret_t __blt(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 6); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if((int32_t)*(X+rs1) < (int32_t)*(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 6); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 7: BGE */ compile_ret_t __bge(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 7); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if((int32_t)*(X+rs1) >= (int32_t)*(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 7); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 8: BLTU */ compile_ret_t __bltu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 8); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(*(X+rs1) < *(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 8); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 9: BGEU */ compile_ret_t __bgeu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 9); uint16_t imm = ((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(*(X+rs1) >= *(X+rs2)) if(imm % traits::INSTR_ALIGNMENT) { raise(0, 0); } else pc_assign(*NEXT_PC) = *PC + (int16_t)sext<13>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 9); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 10: LB */ compile_ret_t __lb(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 10); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { int8_t res = (int8_t)readSpace1(traits::MEM, *(X+rs1) + (int16_t)sext<12>(imm)); if(rd != 0) *(X+rd) = res; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 10); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 11: LH */ compile_ret_t __lh(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 11); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t load_address = *(X+rs1) + (int16_t)sext<12>(imm); int16_t res = (int16_t)readSpace2(traits::MEM, load_address); if(rd != 0) *(X+rd) = res; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 11); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 12: LW */ compile_ret_t __lw(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 12); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t load_address = *(X+rs1) + (int16_t)sext<12>(imm); int32_t res = (int32_t)readSpace4(traits::MEM, load_address); if(rd != 0) *(X+rd) = (uint32_t)res; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 12); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 13: LBU */ compile_ret_t __lbu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 13); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint8_t res = (uint8_t)readSpace1(traits::MEM, *(X+rs1) + (int16_t)sext<12>(imm)); if(rd != 0) *(X+rd) = res; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 13); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 14: LHU */ compile_ret_t __lhu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 14); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t load_address = *(X+rs1) + (int16_t)sext<12>(imm); uint16_t res = (uint16_t)readSpace2(traits::MEM, load_address); if(rd != 0) *(X+rd) = res; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 14); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 15: SB */ compile_ret_t __sb(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 15); uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { writeSpace1(traits::MEM, *(X+rs1) + (int16_t)sext<12>(imm), (int8_t)*(X+rs2)); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 15); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 16: SH */ compile_ret_t __sh(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 16); uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t store_address = *(X+rs1) + (int16_t)sext<12>(imm); writeSpace2(traits::MEM, store_address, (int16_t)*(X+rs2)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 16); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 17: SW */ compile_ret_t __sw(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 17); uint16_t imm = ((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t store_address = *(X+rs1) + (int16_t)sext<12>(imm); writeSpace4(traits::MEM, store_address, *(X+rs2)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 17); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 18: ADDI */ compile_ret_t __addi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 18); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) + (int16_t)sext<12>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 18); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 19: SLTI */ compile_ret_t __slti(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 19); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (int32_t)*(X+rs1) < (int16_t)sext<12>(imm)? 1 : 0; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 19); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 20: SLTIU */ compile_ret_t __sltiu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 20); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (*(X+rs1) < (uint32_t)((int16_t)sext<12>(imm)))? 1 : 0; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 20); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 21: XORI */ compile_ret_t __xori(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 21); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) ^ (int16_t)sext<12>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 21); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 22: ORI */ compile_ret_t __ori(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 22); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) | (int16_t)sext<12>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 22); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 23: ANDI */ compile_ret_t __andi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 23); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) & (int16_t)sext<12>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 23); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 24: SLLI */ compile_ret_t __slli(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 24); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(shamt > 31) { raise(0, 0); } else { if(rd != 0) *(X+rd) = *(X+rs1) << shamt; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 24); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 25: SRLI */ compile_ret_t __srli(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 25); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(shamt > 31) { raise(0, 0); } else { if(rd != 0) *(X+rd) = *(X+rs1) >> shamt; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 25); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 26: SRAI */ compile_ret_t __srai(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 26); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(shamt > 31) { raise(0, 0); } else { if(rd != 0) *(X+rd) = (int32_t)*(X+rs1) >> shamt; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 26); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 27: ADD */ compile_ret_t __add(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 27); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) + *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 27); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 28: SUB */ compile_ret_t __sub(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 28); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) - *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 28); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 29: SLL */ compile_ret_t __sll(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 29); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) << (*(X+rs2) & (traits::XLEN - 1)); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 29); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 30: SLT */ compile_ret_t __slt(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 30); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (int32_t)*(X+rs1) < (int32_t)*(X+rs2)? 1 : 0; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 30); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 31: SLTU */ compile_ret_t __sltu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 31); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (uint32_t)*(X+rs1) < (uint32_t)*(X+rs2)? 1 : 0; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 31); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 32: XOR */ compile_ret_t __xor(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 32); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) ^ *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 32); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 33: SRL */ compile_ret_t __srl(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 33); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) >> (*(X+rs2) & (traits::XLEN - 1)); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 33); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 34: SRA */ compile_ret_t __sra(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 34); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = (int32_t)*(X+rs1) >> (*(X+rs2) & (traits::XLEN - 1)); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 34); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 35: OR */ compile_ret_t __or(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 35); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) | *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 35); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 36: AND */ compile_ret_t __and(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 36); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs1) & *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 36); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 37: FENCE */ compile_ret_t __fence(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 37); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t succ = ((bit_sub<20,4>(instr))); uint8_t pred = ((bit_sub<24,4>(instr))); uint8_t fm = ((bit_sub<28,4>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"), fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd))); this->core.disass_output(pc.val, mnemonic); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { writeSpace1(traits::FENCE, traits::fence, pred << 4 | succ); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 37); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 38: ECALL */ compile_ret_t __ecall(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 38); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "ecall"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { raise(0, 11); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 38); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 39: EBREAK */ compile_ret_t __ebreak(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 39); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "ebreak"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { raise(0, 3); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 39); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 40: URET */ compile_ret_t __uret(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 40); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "uret"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { leave(0); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 40); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 41: SRET */ compile_ret_t __sret(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 41); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "sret"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { leave(1); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 41); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 42: MRET */ compile_ret_t __mret(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 42); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "mret"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { leave(3); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 42); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 43: WFI */ compile_ret_t __wfi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 43); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "wfi"); } // used registers// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { wait(1); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 43); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 44: CSRRW */ compile_ret_t __csrrw(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 44); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrs1 = *(X+rs1); if(rd != 0) { uint32_t xrd = readSpace4(traits::CSR, csr); writeSpace4(traits::CSR, csr, xrs1); *(X+rd) = xrd; } else { writeSpace4(traits::CSR, csr, xrs1); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 44); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 45: CSRRS */ compile_ret_t __csrrs(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 45); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrd = readSpace4(traits::CSR, csr); uint32_t xrs1 = *(X+rs1); if(rs1 != 0) writeSpace4(traits::CSR, csr, xrd | xrs1); if(rd != 0) *(X+rd) = xrd; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 45); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 46: CSRRC */ compile_ret_t __csrrc(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 46); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrd = readSpace4(traits::CSR, csr); uint32_t xrs1 = *(X+rs1); if(rs1 != 0) writeSpace4(traits::CSR, csr, xrd & ~ xrs1); if(rd != 0) *(X+rd) = xrd; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 46); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 47: CSRRWI */ compile_ret_t __csrrwi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 47); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrd = readSpace4(traits::CSR, csr); writeSpace4(traits::CSR, csr, (uint32_t)zimm); if(rd != 0) *(X+rd) = xrd; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 47); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 48: CSRRSI */ compile_ret_t __csrrsi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 48); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrd = readSpace4(traits::CSR, csr); if(zimm != 0) writeSpace4(traits::CSR, csr, xrd | (uint32_t)zimm); if(rd != 0) *(X+rd) = xrd; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 48); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 49: CSRRCI */ compile_ret_t __csrrci(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 49); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { uint32_t xrd = readSpace4(traits::CSR, csr); if(zimm != 0) writeSpace4(traits::CSR, csr, xrd & ~ ((uint32_t)zimm)); if(rd != 0) *(X+rd) = xrd; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 49); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 50: MUL */ compile_ret_t __mul(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 50); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { int64_t res = (int64_t)(int32_t)*(X+rs1) * (int64_t)(int32_t)*(X+rs2); *(X+rd) = (uint32_t)res; } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 50); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 51: MULH */ compile_ret_t __mulh(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 51); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { int64_t res = (int64_t)(int32_t)*(X+rs1) * (int64_t)(int32_t)*(X+rs2); *(X+rd) = (uint32_t)(res >> traits::XLEN); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 51); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 52: MULHSU */ compile_ret_t __mulhsu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 52); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { int64_t res = (int64_t)(int32_t)*(X+rs1) * (uint64_t)*(X+rs2); *(X+rd) = (uint32_t)(res >> traits::XLEN); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 52); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 53: MULHU */ compile_ret_t __mulhu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 53); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { uint64_t res = (uint64_t)*(X+rs1) * (uint64_t)*(X+rs2); *(X+rd) = (uint32_t)(res >> traits::XLEN); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 53); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 54: DIV */ compile_ret_t __div(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 54); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { if(*(X+rs2) != 0) { uint32_t MMIN = 1 << (traits::XLEN - 1); if(*(X+rs1) == MMIN && (int32_t)*(X+rs2) == - 1) *(X+rd) = MMIN; else *(X+rd) = (int32_t)*(X+rs1) / (int32_t)*(X+rs2); } else *(X+rd) = - 1; } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 54); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 55: DIVU */ compile_ret_t __divu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 55); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { if(*(X+rs2) != 0) *(X+rd) = *(X+rs1) / *(X+rs2); else *(X+rd) = - 1; } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 55); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 56: REM */ compile_ret_t __rem(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 56); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { if(*(X+rs2) != 0) { uint32_t MMIN = 1 << (traits::XLEN - 1); if(*(X+rs1) == MMIN && (int32_t)*(X+rs2) == - 1) *(X+rd) = 0; else *(X+rd) = (int32_t)*(X+rs1) % (int32_t)*(X+rs2); } else *(X+rd) = *(X+rs1); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 56); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 57: REMU */ compile_ret_t __remu(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 57); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 4; // execute instruction try { { if(rd != 0) { if(*(X+rs2) != 0) *(X+rd) = *(X+rs1) % *(X+rs2); else *(X+rd) = *(X+rs1); } } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 57); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 58: CADDI4SPN */ compile_ret_t __caddi4spn(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 58); uint8_t rd = ((bit_sub<2,3>(instr))); uint16_t imm = ((bit_sub<5,1>(instr) << 3) | (bit_sub<6,1>(instr) << 2) | (bit_sub<7,4>(instr) << 6) | (bit_sub<11,2>(instr) << 4)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "caddi4spn"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(imm) *(X+(rd + 8)) = *(X+2) + imm; else raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 58); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 59: CLW */ compile_ret_t __clw(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 59); uint8_t rd = ((bit_sub<2,3>(instr))); uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "clw"), fmt::arg("rd", name(8+rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t load_address = *(X+(rs1 + 8)) + uimm; *(X+(rd + 8)) = (int32_t)readSpace4(traits::MEM, load_address); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 59); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 60: CSW */ compile_ret_t __csw(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 60); uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t uimm = ((bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 2) | (bit_sub<10,3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "csw"), fmt::arg("rs2", name(8+rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8+rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t load_address = *(X+(rs1 + 8)) + uimm; writeSpace4(traits::MEM, load_address, *(X+(rs2 + 8))); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 60); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 61: CADDI */ compile_ret_t __caddi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 61); uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "caddi"), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { *(X+rs1) = *(X+rs1) + (int8_t)sext<6>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 61); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 62: CNOP */ compile_ret_t __cnop(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 62); uint8_t nzimm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "cnop"); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 62); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 63: CJAL */ compile_ret_t __cjal(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 63); uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "cjal"), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { *(X+1) = *PC + 2; pc_assign(*NEXT_PC) = *PC + (int16_t)sext<12>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 63); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 64: CLI */ compile_ret_t __cli(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 64); uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "cli"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { if(rd != 0) *(X+rd) = (uint32_t)(int32_t)sext<6>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 64); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 65: CLUI */ compile_ret_t __clui(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 65); uint32_t imm = ((bit_sub<2,5>(instr) << 12) | (bit_sub<12,1>(instr) << 17)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "clui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { if(imm == 0) raise(0, 2); if(rd != 0) *(X+rd) = (int32_t)sext<18>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 65); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 66: CADDI16SP */ compile_ret_t __caddi16sp(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 66); uint16_t nzimm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 7) | (bit_sub<5,1>(instr) << 6) | (bit_sub<6,1>(instr) << 4) | (bit_sub<12,1>(instr) << 9)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "caddi16sp"), fmt::arg("nzimm", nzimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(nzimm) *(X+2) = *(X+2) + (int16_t)sext<10>(nzimm); else raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 66); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 67: __reserved_clui */ compile_ret_t ____reserved_clui(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 67); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "__reserved_clui"); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 67); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 68: CSRLI */ compile_ret_t __csrli(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 68); uint8_t shamt = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "csrli"), fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rs1_idx = rs1 + 8; *(X+rs1_idx) = *(X+rs1_idx) >> shamt; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 68); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 69: CSRAI */ compile_ret_t __csrai(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 69); uint8_t shamt = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "csrai"), fmt::arg("rs1", name(8+rs1)), fmt::arg("shamt", shamt)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(shamt) { uint32_t rs1_idx = rs1 + 8; *(X+rs1_idx) = ((int32_t)*(X+rs1_idx)) >> shamt; } else if(traits::XLEN == 128) { uint32_t rs1_idx = rs1 + 8; *(X+rs1_idx) = ((int32_t)*(X+rs1_idx)) >> 64; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 69); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 70: CANDI */ compile_ret_t __candi(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 70); uint8_t imm = ((bit_sub<2,5>(instr)) | (bit_sub<12,1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "candi"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rs1_idx = rs1 + 8; *(X+rs1_idx) = *(X+rs1_idx) & (int8_t)sext<6>(imm); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 70); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 71: CSUB */ compile_ret_t __csub(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 71); uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "csub"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rd_idx = rd + 8; *(X+rd_idx) = *(X+rd_idx) - *(X+(rs2 + 8)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 71); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 72: CXOR */ compile_ret_t __cxor(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 72); uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "cxor"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rd_idx = rd + 8; *(X+rd_idx) = *(X+rd_idx) ^ *(X+(rs2 + 8)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 72); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 73: COR */ compile_ret_t __cor(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 73); uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "cor"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rd_idx = rd + 8; *(X+rd_idx) = *(X+rd_idx) | *(X+(rs2 + 8)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 73); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 74: CAND */ compile_ret_t __cand(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 74); uint8_t rs2 = ((bit_sub<2,3>(instr))); uint8_t rd = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "cand"), fmt::arg("rd", name(8+rd)), fmt::arg("rs2", name(8+rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t rd_idx = rd + 8; *(X+rd_idx) = *(X+rd_idx) & *(X+(rs2 + 8)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 74); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 75: CJ */ compile_ret_t __cj(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 75); uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,3>(instr) << 1) | (bit_sub<6,1>(instr) << 7) | (bit_sub<7,1>(instr) << 6) | (bit_sub<8,1>(instr) << 10) | (bit_sub<9,2>(instr) << 8) | (bit_sub<11,1>(instr) << 4) | (bit_sub<12,1>(instr) << 11)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "cj"), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { pc_assign(*NEXT_PC) = *PC + (int16_t)sext<12>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 75); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 76: CBEQZ */ compile_ret_t __cbeqz(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 76); uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "cbeqz"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(*(X+(rs1 + 8)) == 0) pc_assign(*NEXT_PC) = *PC + (int16_t)sext<9>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 76); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 77: CBNEZ */ compile_ret_t __cbnez(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 77); uint16_t imm = ((bit_sub<2,1>(instr) << 5) | (bit_sub<3,2>(instr) << 1) | (bit_sub<5,2>(instr) << 6) | (bit_sub<10,2>(instr) << 3) | (bit_sub<12,1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7,3>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "cbnez"), fmt::arg("rs1", name(8+rs1)), fmt::arg("imm", imm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(*(X+(rs1 + 8)) != 0) pc_assign(*NEXT_PC) = *PC + (int16_t)sext<9>(imm); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 77); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 78: CSLLI */ compile_ret_t __cslli(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 78); uint8_t nzuimm = ((bit_sub<2,5>(instr))); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "cslli"), fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(nzuimm) *(X+rs1) = *(X+rs1) << nzuimm; } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 78); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 79: CLWSP */ compile_ret_t __clwsp(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 79); uint8_t uimm = ((bit_sub<2,2>(instr) << 6) | (bit_sub<4,3>(instr) << 2) | (bit_sub<12,1>(instr) << 5)); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "clwsp"), fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(rd) { uint32_t offs = *(X+2) + uimm; *(X+rd) = (int32_t)readSpace4(traits::MEM, offs); } else raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 79); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 80: CMV */ compile_ret_t __cmv(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 80); uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "cmv"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 80); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 81: CJR */ compile_ret_t __cjr(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 81); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}", fmt::arg("mnemonic", "cjr"), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(rs1) pc_assign(*NEXT_PC) = *(X+rs1) & ~ 0x1; else raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 81); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 82: __reserved_cmv */ compile_ret_t ____reserved_cmv(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 82); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "__reserved_cmv"); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 82); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 83: CADD */ compile_ret_t __cadd(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 83); uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t rd = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "cadd"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { if(rd != 0) *(X+rd) = *(X+rd) + *(X+rs2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 83); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 84: CJALR */ compile_ret_t __cjalr(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 84); uint8_t rs1 = ((bit_sub<7,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}", fmt::arg("mnemonic", "cjalr"), fmt::arg("rs1", name(rs1))); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { int32_t new_pc = *(X+rs1); *(X+1) = *PC + 2; pc_assign(*NEXT_PC) = new_pc & ~ 0x1; } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 84); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 85: CEBREAK */ compile_ret_t __cebreak(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 85); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "cebreak"); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { raise(0, 3); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 85); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 86: CSWSP */ compile_ret_t __cswsp(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 86); uint8_t rs2 = ((bit_sub<2,5>(instr))); uint8_t uimm = ((bit_sub<7,2>(instr) << 6) | (bit_sub<9,4>(instr) << 2)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "cswsp"), fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm)); this->core.disass_output(pc.val, mnemonic); } // used registers auto* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]);// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { { uint32_t offs = *(X+2) + uimm; writeSpace4(traits::MEM, offs, (uint32_t)*(X+rs2)); } } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 86); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /* instruction 87: DII */ compile_ret_t __dii(virt_addr_t& pc, code_word_t instr){ // pre execution stuff auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *PC=*NEXT_PC; auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); *trap_state = *reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PENDING_TRAP]); if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, 87); if(this->disass_enabled){ /* generate console output when executing the command */ this->core.disass_output(pc.val, "dii"); } // used registers// calculate next pc value *NEXT_PC = *PC + 2; // execute instruction try { raise(0, 2); } catch(...){} // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, 87); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } else { (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::ICOUNT]))++; (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::INSTRET]))++; } (*reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::CYCLE]))++; pc.val=*NEXT_PC; return pc; } /**************************************************************************** * end opcode definitions ****************************************************************************/ compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) { this->do_sync(PRE_SYNC, static_cast(arch::traits::opcode_e::MAX_OPCODE)); uint32_t* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); uint32_t* NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2); raise(0, 2); // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast(arch::traits::opcode_e::MAX_OPCODE)); auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val, instr); } pc.val=*NEXT_PC; return pc; } //static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK; iss::status fetch_ins(virt_addr_t pc, uint8_t * data){ auto phys_pc = this->core.v2p(pc); //if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err; // if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction // if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err; //} else { if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err; //} return iss::Ok; } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } // according to // https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation #ifdef __GCC__ constexpr size_t bit_count(uint32_t u) { return __builtin_popcount(u); } #elif __cplusplus < 201402L constexpr size_t uCount(uint32_t u) { return u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); } constexpr size_t bit_count(uint32_t u) { return ((uCount(u) + (uCount(u) >> 3)) & 030707070707) % 63; } #else constexpr size_t bit_count(uint32_t u) { size_t uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); return ((uCount + (uCount >> 3)) & 030707070707) % 63; } #endif template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { for (auto instr : instr_descr) { auto quadrant = instr.value & 0x3; qlut[quadrant].push_back(instruction_pattern{instr.value, instr.mask, instr.op}); } for(auto& lut: qlut){ std::sort(std::begin(lut), std::end(lut), [](instruction_pattern const& a, instruction_pattern const& b){ return bit_count(a.mask) > bit_count(b.mask); }); } } inline bool is_count_limit_enabled(finish_cond_e cond){ return (cond & finish_cond_e::COUNT_LIMIT) == finish_cond_e::COUNT_LIMIT; } inline bool is_jump_to_self_enabled(finish_cond_e cond){ return (cond & finish_cond_e::JUMP_TO_SELF) == finish_cond_e::JUMP_TO_SELF; } template typename vm_impl::compile_func vm_impl::decode_inst(code_word_t instr){ for(auto& e: qlut[instr&0x3]){ if(!((instr&e.mask) ^ e.value )) return e.opc; } return &this_class::illegal_intruction; } template typename vm_base::virt_addr_t vm_impl::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){ // we fetch at max 4 byte, alignment is 2 code_word_t insn = 0; auto *const data = (uint8_t *)&insn; auto pc=start; while(!this->core.should_stop() && !(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){ auto res = fetch_ins(pc, data); if(res!=iss::Ok){ this->do_sync(POST_SYNC, std::numeric_limits::max()); pc.val = super::core.enter_trap(std::numeric_limits::max(), pc.val, 0); } else { if (is_jump_to_self_enabled(cond) && (insn == 0x0000006f || (insn&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0' auto f = decode_inst(insn); auto old_pc = pc.val; pc = (this->*f)(pc, insn); } } return pc; } } // namespace mnrv32 template <> std::unique_ptr create(arch::tgc_c *core, unsigned short port, bool dump) { auto ret = new tgc_c::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace interp } // namespace iss