/******************************************************************************* * Copyright (C) 2020 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace tcc { namespace tgc5c { using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::tcc::vm_base { public: using traits = arch::traits; using super = typename iss::tcc::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using mem_type_e = typename traits::mem_type_e; using addr_t = typename super::addr_t; using tu_builder = typename super::tu_builder; vm_impl(); vm_impl(ARCH& core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if* accquire_target_adapter(server_if* srv) override { debugger_if::dbg_enabled = true; if(vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using vm_base::get_reg_ptr; using this_class = vm_impl; using compile_ret_t = std::tuple; using compile_func = compile_ret_t (this_class::*)(virt_addr_t& pc, code_word_t instr, tu_builder&); inline const char* name(size_t index) { return traits::reg_aliases.at(index); } void setup_module(std::string m) override { super::setup_module(m); } compile_ret_t gen_single_inst_behavior(virt_addr_t&, unsigned int&, tu_builder&) override; void gen_trap_behavior(tu_builder& tu) override; void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause); void gen_leave_trap(tu_builder& tu, unsigned lvl); void gen_wait(tu_builder& tu, unsigned type); inline void gen_trap_check(tu_builder& tu) { tu("if(*trap_state!=0) goto trap_entry;"); } inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) { switch(reg_num) { case traits::NEXT_PC: tu("*next_pc = {:#x};", pc.val); break; case traits::PC: tu("*pc = {:#x};", pc.val); break; default: if(!tu.defined_regs[reg_num]) { tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast(get_reg_ptr(reg_num))); tu.defined_regs[reg_num] = true; } tu("*reg{:02d} = {:#x};", reg_num, pc.val); } } template ::type> inline S sext(U from) { auto mask = (1ULL << W) - 1; auto sign_mask = 1ULL << (W - 1); return (from & mask) | ((from & sign_mask) ? ~mask : 0); } private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct instruction_descriptor { size_t length; uint32_t value; uint32_t mask; compile_func op; }; struct decoding_tree_node { std::vector instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value) {} }; decoding_tree_node* root{nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */ /* instruction LUI, encoding '0b00000000000000000000000000110111' */ {32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui}, /* instruction AUIPC, encoding '0b00000000000000000000000000010111' */ {32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc}, /* instruction JAL, encoding '0b00000000000000000000000001101111' */ {32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal}, /* instruction JALR, encoding '0b00000000000000000000000001100111' */ {32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr}, /* instruction BEQ, encoding '0b00000000000000000000000001100011' */ {32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq}, /* instruction BNE, encoding '0b00000000000000000001000001100011' */ {32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne}, /* instruction BLT, encoding '0b00000000000000000100000001100011' */ {32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt}, /* instruction BGE, encoding '0b00000000000000000101000001100011' */ {32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge}, /* instruction BLTU, encoding '0b00000000000000000110000001100011' */ {32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu}, /* instruction BGEU, encoding '0b00000000000000000111000001100011' */ {32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu}, /* instruction LB, encoding '0b00000000000000000000000000000011' */ {32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb}, /* instruction LH, encoding '0b00000000000000000001000000000011' */ {32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh}, /* instruction LW, encoding '0b00000000000000000010000000000011' */ {32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw}, /* instruction LBU, encoding '0b00000000000000000100000000000011' */ {32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu}, /* instruction LHU, encoding '0b00000000000000000101000000000011' */ {32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu}, /* instruction SB, encoding '0b00000000000000000000000000100011' */ {32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb}, /* instruction SH, encoding '0b00000000000000000001000000100011' */ {32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh}, /* instruction SW, encoding '0b00000000000000000010000000100011' */ {32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw}, /* instruction ADDI, encoding '0b00000000000000000000000000010011' */ {32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi}, /* instruction SLTI, encoding '0b00000000000000000010000000010011' */ {32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti}, /* instruction SLTIU, encoding '0b00000000000000000011000000010011' */ {32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu}, /* instruction XORI, encoding '0b00000000000000000100000000010011' */ {32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori}, /* instruction ORI, encoding '0b00000000000000000110000000010011' */ {32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori}, /* instruction ANDI, encoding '0b00000000000000000111000000010011' */ {32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi}, /* instruction SLLI, encoding '0b00000000000000000001000000010011' */ {32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli}, /* instruction SRLI, encoding '0b00000000000000000101000000010011' */ {32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli}, /* instruction SRAI, encoding '0b01000000000000000101000000010011' */ {32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai}, /* instruction ADD, encoding '0b00000000000000000000000000110011' */ {32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add}, /* instruction SUB, encoding '0b01000000000000000000000000110011' */ {32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub}, /* instruction SLL, encoding '0b00000000000000000001000000110011' */ {32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll}, /* instruction SLT, encoding '0b00000000000000000010000000110011' */ {32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt}, /* instruction SLTU, encoding '0b00000000000000000011000000110011' */ {32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu}, /* instruction XOR, encoding '0b00000000000000000100000000110011' */ {32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor}, /* instruction SRL, encoding '0b00000000000000000101000000110011' */ {32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl}, /* instruction SRA, encoding '0b01000000000000000101000000110011' */ {32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra}, /* instruction OR, encoding '0b00000000000000000110000000110011' */ {32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or}, /* instruction AND, encoding '0b00000000000000000111000000110011' */ {32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and}, /* instruction FENCE, encoding '0b00000000000000000000000000001111' */ {32, 0b00000000000000000000000000001111, 0b00000000000000000111000001111111, &this_class::__fence}, /* instruction ECALL, encoding '0b00000000000000000000000001110011' */ {32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall}, /* instruction EBREAK, encoding '0b00000000000100000000000001110011' */ {32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak}, /* instruction MRET, encoding '0b00110000001000000000000001110011' */ {32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret}, /* instruction WFI, encoding '0b00010000010100000000000001110011' */ {32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi}, /* instruction CSRRW, encoding '0b00000000000000000001000001110011' */ {32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw}, /* instruction CSRRS, encoding '0b00000000000000000010000001110011' */ {32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs}, /* instruction CSRRC, encoding '0b00000000000000000011000001110011' */ {32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc}, /* instruction CSRRWI, encoding '0b00000000000000000101000001110011' */ {32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi}, /* instruction CSRRSI, encoding '0b00000000000000000110000001110011' */ {32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi}, /* instruction CSRRCI, encoding '0b00000000000000000111000001110011' */ {32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci}, /* instruction FENCE_I, encoding '0b00000000000000000001000000001111' */ {32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i}, /* instruction MUL, encoding '0b00000010000000000000000000110011' */ {32, 0b00000010000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__mul}, /* instruction MULH, encoding '0b00000010000000000001000000110011' */ {32, 0b00000010000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__mulh}, /* instruction MULHSU, encoding '0b00000010000000000010000000110011' */ {32, 0b00000010000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__mulhsu}, /* instruction MULHU, encoding '0b00000010000000000011000000110011' */ {32, 0b00000010000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__mulhu}, /* instruction DIV, encoding '0b00000010000000000100000000110011' */ {32, 0b00000010000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__div}, /* instruction DIVU, encoding '0b00000010000000000101000000110011' */ {32, 0b00000010000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__divu}, /* instruction REM, encoding '0b00000010000000000110000000110011' */ {32, 0b00000010000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__rem}, /* instruction REMU, encoding '0b00000010000000000111000000110011' */ {32, 0b00000010000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__remu}, /* instruction C__ADDI4SPN, encoding '0b0000000000000000' */ {16, 0b0000000000000000, 0b1110000000000011, &this_class::__c__addi4spn}, /* instruction C__LW, encoding '0b0100000000000000' */ {16, 0b0100000000000000, 0b1110000000000011, &this_class::__c__lw}, /* instruction C__SW, encoding '0b1100000000000000' */ {16, 0b1100000000000000, 0b1110000000000011, &this_class::__c__sw}, /* instruction C__ADDI, encoding '0b0000000000000001' */ {16, 0b0000000000000001, 0b1110000000000011, &this_class::__c__addi}, /* instruction C__NOP, encoding '0b0000000000000001' */ {16, 0b0000000000000001, 0b1110111110000011, &this_class::__c__nop}, /* instruction C__JAL, encoding '0b0010000000000001' */ {16, 0b0010000000000001, 0b1110000000000011, &this_class::__c__jal}, /* instruction C__LI, encoding '0b0100000000000001' */ {16, 0b0100000000000001, 0b1110000000000011, &this_class::__c__li}, /* instruction C__LUI, encoding '0b0110000000000001' */ {16, 0b0110000000000001, 0b1110000000000011, &this_class::__c__lui}, /* instruction C__ADDI16SP, encoding '0b0110000100000001' */ {16, 0b0110000100000001, 0b1110111110000011, &this_class::__c__addi16sp}, /* instruction __reserved_clui, encoding '0b0110000000000001' */ {16, 0b0110000000000001, 0b1111000001111111, &this_class::____reserved_clui}, /* instruction C__SRLI, encoding '0b1000000000000001' */ {16, 0b1000000000000001, 0b1111110000000011, &this_class::__c__srli}, /* instruction C__SRAI, encoding '0b1000010000000001' */ {16, 0b1000010000000001, 0b1111110000000011, &this_class::__c__srai}, /* instruction C__ANDI, encoding '0b1000100000000001' */ {16, 0b1000100000000001, 0b1110110000000011, &this_class::__c__andi}, /* instruction C__SUB, encoding '0b1000110000000001' */ {16, 0b1000110000000001, 0b1111110001100011, &this_class::__c__sub}, /* instruction C__XOR, encoding '0b1000110000100001' */ {16, 0b1000110000100001, 0b1111110001100011, &this_class::__c__xor}, /* instruction C__OR, encoding '0b1000110001000001' */ {16, 0b1000110001000001, 0b1111110001100011, &this_class::__c__or}, /* instruction C__AND, encoding '0b1000110001100001' */ {16, 0b1000110001100001, 0b1111110001100011, &this_class::__c__and}, /* instruction C__J, encoding '0b1010000000000001' */ {16, 0b1010000000000001, 0b1110000000000011, &this_class::__c__j}, /* instruction C__BEQZ, encoding '0b1100000000000001' */ {16, 0b1100000000000001, 0b1110000000000011, &this_class::__c__beqz}, /* instruction C__BNEZ, encoding '0b1110000000000001' */ {16, 0b1110000000000001, 0b1110000000000011, &this_class::__c__bnez}, /* instruction C__SLLI, encoding '0b0000000000000010' */ {16, 0b0000000000000010, 0b1111000000000011, &this_class::__c__slli}, /* instruction C__LWSP, encoding '0b0100000000000010' */ {16, 0b0100000000000010, 0b1110000000000011, &this_class::__c__lwsp}, /* instruction C__MV, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111000000000011, &this_class::__c__mv}, /* instruction C__JR, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111000001111111, &this_class::__c__jr}, /* instruction __reserved_cmv, encoding '0b1000000000000010' */ {16, 0b1000000000000010, 0b1111111111111111, &this_class::____reserved_cmv}, /* instruction C__ADD, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111000000000011, &this_class::__c__add}, /* instruction C__JALR, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111000001111111, &this_class::__c__jalr}, /* instruction C__EBREAK, encoding '0b1001000000000010' */ {16, 0b1001000000000010, 0b1111111111111111, &this_class::__c__ebreak}, /* instruction C__SWSP, encoding '0b1100000000000010' */ {16, 0b1100000000000010, 0b1110000000000011, &this_class::__c__swsp}, /* instruction DII, encoding '0b0000000000000000' */ {16, 0b0000000000000000, 0b1111111111111111, &this_class::__dii}, }}; /* instruction definitions */ /* instruction 0: LUI */ compile_ret_t __lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LUI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 0); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint32_t imm = ((bit_sub<12, 20>(instr) << 12)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)imm), 32)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 0); return returnValue; } /* instruction 1: AUIPC */ compile_ret_t __auipc(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("AUIPC_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 1); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint32_t imm = ((bit_sub<12, 20>(instr) << 12)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)(PC + (int32_t)imm), 32)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 1); return returnValue; } /* instruction 2: JAL */ compile_ret_t __jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("JAL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 2); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint32_t imm = ((bit_sub<12, 8>(instr) << 12) | (bit_sub<20, 1>(instr) << 11) | (bit_sub<21, 10>(instr) << 1) | (bit_sub<31, 1>(instr) << 20)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)(PC + 4), 32)); } auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int32_t)sext<21>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 2); return returnValue; } /* instruction 3: JALR */ compile_ret_t __jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("JALR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 3); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto addr_mask = tu.assignment(tu.constant((uint32_t)-2, 32), 32); auto new_pc = tu.assignment( tu.ext((tu.bitwise_and((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), addr_mask)), 32, false), 32); tu.open_if(tu.urem(new_pc, tu.constant(static_cast(traits::INSTR_ALIGNMENT), 32))); this->gen_raise_trap(tu, 0, 0); tu.open_else(); if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)(PC + 4), 32)); } auto PC_val_v = tu.assignment("PC_val", new_pc, 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 3); return returnValue; } /* instruction 4: BEQ */ compile_ret_t __beq(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BEQ_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 4); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_EQ, tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 4); return returnValue; } /* instruction 5: BNE */ compile_ret_t __bne(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BNE_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 5); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_NE, tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 5); return returnValue; } /* instruction 6: BLT */ compile_ret_t __blt(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BLT_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 6); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_SLT, tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.ext(tu.load(rs2 + traits::X0, 0), 32, true))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 6); return returnValue; } /* instruction 7: BGE */ compile_ret_t __bge(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BGE_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 7); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_SGE, tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.ext(tu.load(rs2 + traits::X0, 0), 32, true))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 7); return returnValue; } /* instruction 8: BLTU */ compile_ret_t __bltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BLTU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 8); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_ULT, tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 8); return returnValue; } /* instruction 9: BGEU */ compile_ret_t __bgeu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("BGEU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 9); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 1>(instr) << 11) | (bit_sub<8, 4>(instr) << 1) | (bit_sub<25, 6>(instr) << 5) | (bit_sub<31, 1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_UGE, tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); if(imm % static_cast(traits::INSTR_ALIGNMENT)) { this->gen_raise_trap(tu, 0, 0); } else { auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<13>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } tu.close_scope(); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 9); return returnValue; } /* instruction 10: LB */ compile_ret_t __lb(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LB_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 10); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto load_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 8), 8, true), 8); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 10); return returnValue; } /* instruction 11: LH */ compile_ret_t __lh(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LH_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 11); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto load_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 16), 16, true), 16); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 11); return returnValue; } /* instruction 12: LW */ compile_ret_t __lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LW_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 12); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto load_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); auto res = tu.assignment(tu.ext(tu.read_mem(traits::MEM, load_address, 32), 32, true), 32); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 12); return returnValue; } /* instruction 13: LBU */ compile_ret_t __lbu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LBU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 13); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto load_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 8), 8); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 13); return returnValue; } /* instruction 14: LHU */ compile_ret_t __lhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("LHU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 14); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto load_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); auto res = tu.assignment(tu.read_mem(traits::MEM, load_address, 16), 16); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 14); return returnValue; } /* instruction 15: SB */ compile_ret_t __sb(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SB_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 15); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 5>(instr)) | (bit_sub<25, 7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto store_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0), 8, false)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 15); return returnValue; } /* instruction 16: SH */ compile_ret_t __sh(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SH_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 16); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 5>(instr)) | (bit_sub<25, 7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto store_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0), 16, false)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 16); return returnValue; } /* instruction 17: SW */ compile_ret_t __sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SW_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 17); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<7, 5>(instr)) | (bit_sub<25, 7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto store_address = tu.assignment(tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false), 32); tu.write_mem(traits::MEM, store_address, tu.ext(tu.load(rs2 + traits::X0, 0), 32, false)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 17); return returnValue; } /* instruction 18: ADDI */ compile_ret_t __addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("ADDI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 18); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int16_t)sext<12>(imm), 16))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 18); return returnValue; } /* instruction 19: SLTI */ compile_ret_t __slti(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLTI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 19); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_SLT, tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.constant((int16_t)sext<12>(imm), 16))), tu.constant(1, 8), tu.constant(0, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 19); return returnValue; } /* instruction 20: SLTIU */ compile_ret_t __sltiu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLTIU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 20); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.conditionalAssignment((tu.icmp(ICmpInst::ICMP_ULT, tu.load(rs1 + traits::X0, 0), tu.constant((uint32_t)((int16_t)sext<12>(imm)), 32))), tu.constant(1, 8), tu.constant(0, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 20); return returnValue; } /* instruction 21: XORI */ compile_ret_t __xori(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("XORI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 21); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_xor(tu.load(rs1 + traits::X0, 0), tu.constant((uint32_t)((int16_t)sext<12>(imm)), 32))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 21); return returnValue; } /* instruction 22: ORI */ compile_ret_t __ori(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("ORI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 22); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_or(tu.load(rs1 + traits::X0, 0), tu.constant((uint32_t)((int16_t)sext<12>(imm)), 32))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 22); return returnValue; } /* instruction 23: ANDI */ compile_ret_t __andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("ANDI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 23); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_and(tu.load(rs1 + traits::X0, 0), tu.constant((uint32_t)((int16_t)sext<12>(imm)), 32))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 23); return returnValue; } /* instruction 24: SLLI */ compile_ret_t __slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLLI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 24); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t shamt = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.shl(tu.load(rs1 + traits::X0, 0), tu.constant(shamt, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 24); return returnValue; } /* instruction 25: SRLI */ compile_ret_t __srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SRLI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 25); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t shamt = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.lshr(tu.load(rs1 + traits::X0, 0), tu.constant(shamt, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 25); return returnValue; } /* instruction 26: SRAI */ compile_ret_t __srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SRAI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 26); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t shamt = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.ashr(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.constant(shamt, 8))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 26); return returnValue; } /* instruction 27: ADD */ compile_ret_t __add(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("ADD_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 27); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 27); return returnValue; } /* instruction 28: SUB */ compile_ret_t __sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SUB_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 28); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.sub(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 28); return returnValue; } /* instruction 29: SLL */ compile_ret_t __sll(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 29); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.shl(tu.load(rs1 + traits::X0, 0), (tu.bitwise_and(tu.load(rs2 + traits::X0, 0), tu.constant((static_cast(traits::XLEN) - 1), 64))))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 29); return returnValue; } /* instruction 30: SLT */ compile_ret_t __slt(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLT_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 30); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_SLT, tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.ext(tu.load(rs2 + traits::X0, 0), 32, true)), tu.constant(1, 8), tu.constant(0, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 30); return returnValue; } /* instruction 31: SLTU */ compile_ret_t __sltu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SLTU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 31); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.conditionalAssignment(tu.icmp(ICmpInst::ICMP_ULT, tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0)), tu.constant(1, 8), tu.constant(0, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 31); return returnValue; } /* instruction 32: XOR */ compile_ret_t __xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("XOR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 32); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_xor(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 32); return returnValue; } /* instruction 33: SRL */ compile_ret_t __srl(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SRL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 33); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.lshr(tu.load(rs1 + traits::X0, 0), (tu.bitwise_and(tu.load(rs2 + traits::X0, 0), tu.constant((static_cast(traits::XLEN) - 1), 64))))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 33); return returnValue; } /* instruction 34: SRA */ compile_ret_t __sra(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("SRA_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 34); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.ashr(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), (tu.bitwise_and(tu.load(rs2 + traits::X0, 0), tu.constant((static_cast(traits::XLEN) - 1), 64))))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 34); return returnValue; } /* instruction 35: OR */ compile_ret_t __or(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("OR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 35); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_or(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 35); return returnValue; } /* instruction 36: AND */ compile_ret_t __and(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("AND_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 36); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.bitwise_and(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 36); return returnValue; } /* instruction 37: FENCE */ compile_ret_t __fence(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("FENCE_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 37); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t succ = ((bit_sub<20, 4>(instr))); uint8_t pred = ((bit_sub<24, 4>(instr))); uint8_t fm = ((bit_sub<28, 4>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {pred}, {succ} ({fm} , {rs1}, {rd})", fmt::arg("mnemonic", "fence"), fmt::arg("pred", pred), fmt::arg("succ", succ), fmt::arg("fm", fm), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.write_mem(traits::FENCE, static_cast(traits::fence), tu.constant((uint8_t)pred << 4 | succ, 8)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 37); return returnValue; } /* instruction 38: ECALL */ compile_ret_t __ecall(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("ECALL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 38); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "ecall"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 11); auto returnValue = std::make_tuple(TRAP); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 38); return returnValue; } /* instruction 39: EBREAK */ compile_ret_t __ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("EBREAK_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 39); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "ebreak"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 3); auto returnValue = std::make_tuple(TRAP); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 39); return returnValue; } /* instruction 40: MRET */ compile_ret_t __mret(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("MRET_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 40); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "mret"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_leave_trap(tu, 3); auto returnValue = std::make_tuple(TRAP); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 40); return returnValue; } /* instruction 41: WFI */ compile_ret_t __wfi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("WFI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 41); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "wfi"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_wait(tu, 1); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 41); return returnValue; } /* instruction 42: CSRRW */ compile_ret_t __csrrw(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRW_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 42); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0), 32); if(rd != 0) { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); tu.write_mem(traits::CSR, csr, xrs1); tu.store(rd + traits::X0, xrd); } else { tu.write_mem(traits::CSR, csr, xrs1); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 42); return returnValue; } /* instruction 43: CSRRS */ compile_ret_t __csrrs(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRS_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 43); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0), 32); if(rs1 != 0) { tu.write_mem(traits::CSR, csr, tu.bitwise_or(xrd, xrs1)); } if(rd != 0) { tu.store(rd + traits::X0, xrd); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 43); return returnValue; } /* instruction 44: CSRRC */ compile_ret_t __csrrc(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRC_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 44); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); auto xrs1 = tu.assignment(tu.load(rs1 + traits::X0, 0), 32); if(rs1 != 0) { tu.write_mem(traits::CSR, csr, tu.bitwise_and(xrd, tu.logical_neg(xrs1))); } if(rd != 0) { tu.store(rd + traits::X0, xrd); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 44); return returnValue; } /* instruction 45: CSRRWI */ compile_ret_t __csrrwi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRWI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 45); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t zimm = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); tu.write_mem(traits::CSR, csr, tu.constant((uint32_t)zimm, 32)); if(rd != 0) { tu.store(rd + traits::X0, xrd); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 45); return returnValue; } /* instruction 46: CSRRSI */ compile_ret_t __csrrsi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRSI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 46); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t zimm = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); if(zimm != 0) { tu.write_mem(traits::CSR, csr, tu.bitwise_or(xrd, tu.constant((uint32_t)zimm, 32))); } if(rd != 0) { tu.store(rd + traits::X0, xrd); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 46); return returnValue; } /* instruction 47: CSRRCI */ compile_ret_t __csrrci(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("CSRRCI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 47); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t zimm = ((bit_sub<15, 5>(instr))); uint16_t csr = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto xrd = tu.assignment(tu.read_mem(traits::CSR, csr, 32), 32); if(zimm != 0) { tu.write_mem(traits::CSR, csr, tu.bitwise_and(xrd, tu.constant(~((uint32_t)zimm), 32))); } if(rd != 0) { tu.store(rd + traits::X0, xrd); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 47); return returnValue; } /* instruction 48: FENCE_I */ compile_ret_t __fence_i(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("FENCE_I_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 48); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint16_t imm = ((bit_sub<20, 12>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {rd}, {imm}", fmt::arg("mnemonic", "fence_i"), fmt::arg("rs1", name(rs1)), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.write_mem(traits::FENCE, static_cast(traits::fencei), tu.constant(imm, 16)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 48); return returnValue; } /* instruction 49: MUL */ compile_ret_t __mul(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("MUL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 49); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mul"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto res = tu.assignment(tu.ext((tu.mul(tu.ext(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), 64, true), tu.ext(tu.ext(tu.load(rs2 + traits::X0, 0), 32, true), 64, true))), 64, true), 64); if(rd != 0) { tu.store(rd + traits::X0, tu.ext(res, 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 49); return returnValue; } /* instruction 50: MULH */ compile_ret_t __mulh(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("MULH_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 50); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulh"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto res = tu.assignment(tu.ext((tu.mul(tu.ext(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), 64, true), tu.ext(tu.ext(tu.load(rs2 + traits::X0, 0), 32, true), 64, true))), 64, true), 64); if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.ashr(res, tu.constant(static_cast(traits::XLEN), 32))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 50); return returnValue; } /* instruction 51: MULHSU */ compile_ret_t __mulhsu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("MULHSU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 51); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhsu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto res = tu.assignment(tu.ext((tu.mul(tu.ext(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), 64, true), tu.ext(tu.load(rs2 + traits::X0, 0), 64, false))), 64, true), 64); if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.ashr(res, tu.constant(static_cast(traits::XLEN), 32))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 51); return returnValue; } /* instruction 52: MULHU */ compile_ret_t __mulhu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("MULHU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 52); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "mulhu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto res = tu.assignment( tu.ext((tu.mul(tu.ext(tu.load(rs1 + traits::X0, 0), 64, false), tu.ext(tu.load(rs2 + traits::X0, 0), 64, false))), 64, false), 64); if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.lshr(res, tu.constant(static_cast(traits::XLEN), 32))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 52); return returnValue; } /* instruction 53: DIV */ compile_ret_t __div(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("DIV_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 53); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "div"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto dividend = tu.assignment(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), 32); auto divisor = tu.assignment(tu.ext(tu.load(rs2 + traits::X0, 0), 32, true), 32); if(rd != 0) { tu.open_if(tu.icmp(ICmpInst::ICMP_NE, divisor, tu.constant(0, 8))); auto MMIN = tu.assignment(tu.constant(((uint32_t)1) << (static_cast(traits::XLEN) - 1), 32), 32); tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ, tu.load(rs1 + traits::X0, 0), MMIN), tu.icmp(ICmpInst::ICMP_EQ, divisor, tu.constant(-1, 8)))); tu.store(rd + traits::X0, MMIN); tu.open_else(); tu.store(rd + traits::X0, tu.ext((tu.sdiv(dividend, divisor)), 32, false)); tu.close_scope(); tu.open_else(); tu.store(rd + traits::X0, tu.constant((uint32_t)-1, 32)); tu.close_scope(); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 53); return returnValue; } /* instruction 54: DIVU */ compile_ret_t __divu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("DIVU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 54); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "divu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_NE, tu.load(rs2 + traits::X0, 0), tu.constant(0, 8))); if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.udiv(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))), 32, false)); } tu.open_else(); if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)-1, 32)); } tu.close_scope(); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 54); return returnValue; } /* instruction 55: REM */ compile_ret_t __rem(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("REM_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 55); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "rem"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_NE, tu.load(rs2 + traits::X0, 0), tu.constant(0, 8))); auto MMIN = tu.assignment(tu.constant((uint32_t)1 << (static_cast(traits::XLEN) - 1), 32), 32); tu.open_if(tu.logical_and(tu.icmp(ICmpInst::ICMP_EQ, tu.load(rs1 + traits::X0, 0), MMIN), tu.icmp(ICmpInst::ICMP_EQ, tu.ext(tu.load(rs2 + traits::X0, 0), 32, true), tu.constant(-1, 8)))); if(rd != 0) { tu.store(rd + traits::X0, tu.constant(0, 8)); } tu.open_else(); if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.srem(tu.ext(tu.load(rs1 + traits::X0, 0), 32, true), tu.ext(tu.load(rs2 + traits::X0, 0), 32, true))), 32, false)); } tu.close_scope(); tu.open_else(); if(rd != 0) { tu.store(rd + traits::X0, tu.load(rs1 + traits::X0, 0)); } tu.close_scope(); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 55); return returnValue; } /* instruction 56: REMU */ compile_ret_t __remu(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("REMU_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 56); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); uint8_t rs1 = ((bit_sub<15, 5>(instr))); uint8_t rs2 = ((bit_sub<20, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "remu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 4; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rs1 >= static_cast(traits::RFS) || rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { tu.open_if(tu.icmp(ICmpInst::ICMP_NE, tu.load(rs2 + traits::X0, 0), tu.constant(0, 8))); if(rd != 0) { tu.store(rd + traits::X0, tu.urem(tu.load(rs1 + traits::X0, 0), tu.load(rs2 + traits::X0, 0))); } tu.open_else(); if(rd != 0) { tu.store(rd + traits::X0, tu.load(rs1 + traits::X0, 0)); } tu.close_scope(); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 56); return returnValue; } /* instruction 57: C__ADDI4SPN */ compile_ret_t __c__addi4spn(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__ADDI4SPN_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 57); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<2, 3>(instr))); uint16_t imm = ((bit_sub<5, 1>(instr) << 3) | (bit_sub<6, 1>(instr) << 2) | (bit_sub<7, 4>(instr) << 6) | (bit_sub<11, 2>(instr) << 4)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__addi4spn"), fmt::arg("rd", name(8 + rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(imm) { tu.store(rd + 8 + traits::X0, tu.ext((tu.add(tu.load(2 + traits::X0, 0), tu.constant(imm, 16))), 32, false)); } else { this->gen_raise_trap(tu, 0, 2); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 57); return returnValue; } /* instruction 58: C__LW */ compile_ret_t __c__lw(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__LW_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 58); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<2, 3>(instr))); uint8_t uimm = ((bit_sub<5, 1>(instr) << 6) | (bit_sub<6, 1>(instr) << 2) | (bit_sub<10, 3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__lw"), fmt::arg("rd", name(8 + rd)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8 + rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); auto offs = tu.assignment(tu.ext((tu.add(tu.load(rs1 + 8 + traits::X0, 0), tu.constant(uimm, 8))), 32, false), 32); tu.store(rd + 8 + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32), 32, true), 32, false)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 58); return returnValue; } /* instruction 59: C__SW */ compile_ret_t __c__sw(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SW_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 59); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 3>(instr))); uint8_t uimm = ((bit_sub<5, 1>(instr) << 6) | (bit_sub<6, 1>(instr) << 2) | (bit_sub<10, 3>(instr) << 3)); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs2}, {uimm:#05x}({rs1})", fmt::arg("mnemonic", "c__sw"), fmt::arg("rs2", name(8 + rs2)), fmt::arg("uimm", uimm), fmt::arg("rs1", name(8 + rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); auto offs = tu.assignment(tu.ext((tu.add(tu.load(rs1 + 8 + traits::X0, 0), tu.constant(uimm, 8))), 32, false), 32); tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2 + 8 + traits::X0, 0), 32, false)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 59); return returnValue; } /* instruction 60: C__ADDI */ compile_ret_t __c__addi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__ADDI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 60); uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2, 5>(instr)) | (bit_sub<12, 1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__addi"), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rs1 != 0) { tu.store(rs1 + traits::X0, tu.ext((tu.add(tu.load(rs1 + traits::X0, 0), tu.constant((int8_t)sext<6>(imm), 8))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 60); return returnValue; } /* instruction 61: C__NOP */ compile_ret_t __c__nop(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__NOP_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 61); uint64_t PC = pc.val; uint8_t nzimm = ((bit_sub<2, 5>(instr)) | (bit_sub<12, 1>(instr) << 5)); if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "c__nop"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 61); return returnValue; } /* instruction 62: C__JAL */ compile_ret_t __c__jal(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__JAL_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 62); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2, 1>(instr) << 5) | (bit_sub<3, 3>(instr) << 1) | (bit_sub<6, 1>(instr) << 7) | (bit_sub<7, 1>(instr) << 6) | (bit_sub<8, 1>(instr) << 10) | (bit_sub<9, 2>(instr) << 8) | (bit_sub<11, 1>(instr) << 4) | (bit_sub<12, 1>(instr) << 11)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__jal"), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(1 + traits::X0, tu.constant((uint32_t)(PC + 2), 32)); auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<12>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 62); return returnValue; } /* instruction 63: C__LI */ compile_ret_t __c__li(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__LI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 63); uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2, 5>(instr)) | (bit_sub<12, 1>(instr) << 5)); uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__li"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)((int8_t)sext<6>(imm)), 32)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 63); return returnValue; } /* instruction 64: C__LUI */ compile_ret_t __c__lui(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__LUI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 64); uint64_t PC = pc.val; uint32_t imm = ((bit_sub<2, 5>(instr) << 12) | (bit_sub<12, 1>(instr) << 17)); uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "c__lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(imm == 0 || rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } if(rd != 0) { tu.store(rd + traits::X0, tu.constant((uint32_t)((int32_t)sext<18>(imm)), 32)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 64); return returnValue; } /* instruction 65: C__ADDI16SP */ compile_ret_t __c__addi16sp(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__ADDI16SP_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 65); uint64_t PC = pc.val; uint16_t nzimm = ((bit_sub<2, 1>(instr) << 5) | (bit_sub<3, 2>(instr) << 7) | (bit_sub<5, 1>(instr) << 6) | (bit_sub<6, 1>(instr) << 4) | (bit_sub<12, 1>(instr) << 9)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {nzimm:#05x}", fmt::arg("mnemonic", "c__addi16sp"), fmt::arg("nzimm", nzimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(nzimm) { tu.store(2 + traits::X0, tu.ext((tu.add(tu.load(2 + traits::X0, 0), tu.constant((int16_t)sext<10>(nzimm), 16))), 32, false)); } else { this->gen_raise_trap(tu, 0, 2); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 65); return returnValue; } /* instruction 66: __reserved_clui */ compile_ret_t ____reserved_clui(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("__reserved_clui_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 66); uint64_t PC = pc.val; uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "__reserved_clui"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 2); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 66); return returnValue; } /* instruction 67: C__SRLI */ compile_ret_t __c__srli(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SRLI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 67); uint64_t PC = pc.val; uint8_t shamt = ((bit_sub<2, 5>(instr))); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srli"), fmt::arg("rs1", name(8 + rs1)), fmt::arg("shamt", shamt)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rs1 + 8 + traits::X0, tu.lshr(tu.load(rs1 + 8 + traits::X0, 0), tu.constant(shamt, 8))); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 67); return returnValue; } /* instruction 68: C__SRAI */ compile_ret_t __c__srai(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SRAI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 68); uint64_t PC = pc.val; uint8_t shamt = ((bit_sub<2, 5>(instr))); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {shamt}", fmt::arg("mnemonic", "c__srai"), fmt::arg("rs1", name(8 + rs1)), fmt::arg("shamt", shamt)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(shamt) { tu.store(rs1 + 8 + traits::X0, tu.ext((tu.ashr((tu.ext(tu.load(rs1 + 8 + traits::X0, 0), 32, true)), tu.constant(shamt, 8))), 32, false)); } else { if(static_cast(traits::XLEN) == 128) { tu.store(rs1 + 8 + traits::X0, tu.ext((tu.ashr((tu.ext(tu.load(rs1 + 8 + traits::X0, 0), 32, true)), tu.constant(64, 8))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 68); return returnValue; } /* instruction 69: C__ANDI */ compile_ret_t __c__andi(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__ANDI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 69); uint64_t PC = pc.val; uint8_t imm = ((bit_sub<2, 5>(instr)) | (bit_sub<12, 1>(instr) << 5)); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__andi"), fmt::arg("rs1", name(8 + rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rs1 + 8 + traits::X0, tu.ext((tu.bitwise_and(tu.load(rs1 + 8 + traits::X0, 0), tu.constant((int8_t)sext<6>(imm), 8))), 32, false)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 69); return returnValue; } /* instruction 70: C__SUB */ compile_ret_t __c__sub(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SUB_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 70); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 3>(instr))); uint8_t rd = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__sub"), fmt::arg("rd", name(8 + rd)), fmt::arg("rs2", name(8 + rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rd + 8 + traits::X0, tu.ext((tu.sub(tu.load(rd + 8 + traits::X0, 0), tu.load(rs2 + 8 + traits::X0, 0))), 32, false)); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 70); return returnValue; } /* instruction 71: C__XOR */ compile_ret_t __c__xor(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__XOR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 71); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 3>(instr))); uint8_t rd = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__xor"), fmt::arg("rd", name(8 + rd)), fmt::arg("rs2", name(8 + rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rd + 8 + traits::X0, tu.bitwise_xor(tu.load(rd + 8 + traits::X0, 0), tu.load(rs2 + 8 + traits::X0, 0))); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 71); return returnValue; } /* instruction 72: C__OR */ compile_ret_t __c__or(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__OR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 72); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 3>(instr))); uint8_t rd = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__or"), fmt::arg("rd", name(8 + rd)), fmt::arg("rs2", name(8 + rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rd + 8 + traits::X0, tu.bitwise_or(tu.load(rd + 8 + traits::X0, 0), tu.load(rs2 + 8 + traits::X0, 0))); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 72); return returnValue; } /* instruction 73: C__AND */ compile_ret_t __c__and(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__AND_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 73); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 3>(instr))); uint8_t rd = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__and"), fmt::arg("rd", name(8 + rd)), fmt::arg("rs2", name(8 + rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.store(rd + 8 + traits::X0, tu.bitwise_and(tu.load(rd + 8 + traits::X0, 0), tu.load(rs2 + 8 + traits::X0, 0))); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 73); return returnValue; } /* instruction 74: C__J */ compile_ret_t __c__j(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__J_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 74); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2, 1>(instr) << 5) | (bit_sub<3, 3>(instr) << 1) | (bit_sub<6, 1>(instr) << 7) | (bit_sub<7, 1>(instr) << 6) | (bit_sub<8, 1>(instr) << 10) | (bit_sub<9, 2>(instr) << 8) | (bit_sub<11, 1>(instr) << 4) | (bit_sub<12, 1>(instr) << 11)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {imm:#05x}", fmt::arg("mnemonic", "c__j"), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<12>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 74); return returnValue; } /* instruction 75: C__BEQZ */ compile_ret_t __c__beqz(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__BEQZ_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 75); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2, 1>(instr) << 5) | (bit_sub<3, 2>(instr) << 1) | (bit_sub<5, 2>(instr) << 6) | (bit_sub<10, 2>(instr) << 3) | (bit_sub<12, 1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__beqz"), fmt::arg("rs1", name(8 + rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.open_if(tu.icmp(ICmpInst::ICMP_EQ, tu.load(rs1 + 8 + traits::X0, 0), tu.constant(0, 8))); auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<9>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); tu.close_scope(); auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 75); return returnValue; } /* instruction 76: C__BNEZ */ compile_ret_t __c__bnez(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__BNEZ_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 76); uint64_t PC = pc.val; uint16_t imm = ((bit_sub<2, 1>(instr) << 5) | (bit_sub<3, 2>(instr) << 1) | (bit_sub<5, 2>(instr) << 6) | (bit_sub<10, 2>(instr) << 3) | (bit_sub<12, 1>(instr) << 8)); uint8_t rs1 = ((bit_sub<7, 3>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {imm:#05x}", fmt::arg("mnemonic", "c__bnez"), fmt::arg("rs1", name(8 + rs1)), fmt::arg("imm", imm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); tu.open_if(tu.icmp(ICmpInst::ICMP_NE, tu.load(rs1 + 8 + traits::X0, 0), tu.constant(0, 8))); auto PC_val_v = tu.assignment("PC_val", (uint32_t)(PC + (int16_t)sext<9>(imm)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); tu.close_scope(); auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 76); return returnValue; } /* instruction 77: C__SLLI */ compile_ret_t __c__slli(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SLLI_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 77); uint64_t PC = pc.val; uint8_t nzuimm = ((bit_sub<2, 5>(instr))); uint8_t rs1 = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}, {nzuimm}", fmt::arg("mnemonic", "c__slli"), fmt::arg("rs1", name(rs1)), fmt::arg("nzuimm", nzuimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rs1 != 0) { tu.store(rs1 + traits::X0, tu.shl(tu.load(rs1 + traits::X0, 0), tu.constant(nzuimm, 8))); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 77); return returnValue; } /* instruction 78: C__LWSP */ compile_ret_t __c__lwsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__LWSP_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 78); uint64_t PC = pc.val; uint8_t uimm = ((bit_sub<2, 2>(instr) << 6) | (bit_sub<4, 3>(instr) << 2) | (bit_sub<12, 1>(instr) << 5)); uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, sp, {uimm:#05x}", fmt::arg("mnemonic", "c__lwsp"), fmt::arg("rd", name(rd)), fmt::arg("uimm", uimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS) || rd == 0) { this->gen_raise_trap(tu, 0, 2); } else { auto offs = tu.assignment(tu.ext((tu.add(tu.load(2 + traits::X0, 0), tu.constant(uimm, 8))), 32, false), 32); tu.store(rd + traits::X0, tu.ext(tu.ext(tu.read_mem(traits::MEM, offs, 32), 32, true), 32, false)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 78); return returnValue; } /* instruction 79: C__MV */ compile_ret_t __c__mv(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__MV_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 79); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 5>(instr))); uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__mv"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.load(rs2 + traits::X0, 0)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 79); return returnValue; } /* instruction 80: C__JR */ compile_ret_t __c__jr(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__JR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 80); uint64_t PC = pc.val; uint8_t rs1 = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jr"), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs1 && rs1 < static_cast(traits::RFS)) { auto PC_val_v = tu.assignment( "PC_val", tu.bitwise_and(tu.load(rs1 % static_cast(traits::RFS) + traits::X0, 0), tu.constant(~0x1, 8)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } else { this->gen_raise_trap(tu, 0, 2); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 80); return returnValue; } /* instruction 81: __reserved_cmv */ compile_ret_t ____reserved_cmv(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("__reserved_cmv_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 81); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "__reserved_cmv"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 2); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 81); return returnValue; } /* instruction 82: C__ADD */ compile_ret_t __c__add(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__ADD_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 82); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 5>(instr))); uint8_t rd = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rd}, {rs2}", fmt::arg("mnemonic", "c__add"), fmt::arg("rd", name(rd)), fmt::arg("rs2", name(rs2))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rd >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { if(rd != 0) { tu.store(rd + traits::X0, tu.ext((tu.add(tu.load(rd + traits::X0, 0), tu.load(rs2 + traits::X0, 0))), 32, false)); } } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 82); return returnValue; } /* instruction 83: C__JALR */ compile_ret_t __c__jalr(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__JALR_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 83); uint64_t PC = pc.val; uint8_t rs1 = ((bit_sub<7, 5>(instr))); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs1}", fmt::arg("mnemonic", "c__jalr"), fmt::arg("rs1", name(rs1))); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs1 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto new_pc = tu.assignment(tu.load(rs1 + traits::X0, 0), 32); tu.store(1 + traits::X0, tu.constant((uint32_t)(PC + 2), 32)); auto PC_val_v = tu.assignment("PC_val", tu.bitwise_and(new_pc, tu.constant(~0x1, 8)), 32); tu.store(traits::NEXT_PC, PC_val_v); tu.store(traits::LAST_BRANCH, tu.constant(2U, 2)); } auto returnValue = std::make_tuple(BRANCH); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 83); return returnValue; } /* instruction 84: C__EBREAK */ compile_ret_t __c__ebreak(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__EBREAK_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 84); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "c__ebreak"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 3); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 84); return returnValue; } /* instruction 85: C__SWSP */ compile_ret_t __c__swsp(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("C__SWSP_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 85); uint64_t PC = pc.val; uint8_t rs2 = ((bit_sub<2, 5>(instr))); uint8_t uimm = ((bit_sub<7, 2>(instr) << 6) | (bit_sub<9, 4>(instr) << 2)); if(this->disass_enabled) { /* generate console output when executing the command */ auto mnemonic = fmt::format("{mnemonic:10} {rs2}, {uimm:#05x}(sp)", fmt::arg("mnemonic", "c__swsp"), fmt::arg("rs2", name(rs2)), fmt::arg("uimm", uimm)); tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, mnemonic); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); if(rs2 >= static_cast(traits::RFS)) { this->gen_raise_trap(tu, 0, 2); } else { auto offs = tu.assignment(tu.ext((tu.add(tu.load(2 + traits::X0, 0), tu.constant(uimm, 8))), 32, false), 32); tu.write_mem(traits::MEM, offs, tu.ext(tu.load(rs2 + traits::X0, 0), 32, false)); } auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 85); return returnValue; } /* instruction 86: DII */ compile_ret_t __dii(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { tu("DII_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC, 86); uint64_t PC = pc.val; if(this->disass_enabled) { /* generate console output when executing the command */ tu("print_disass(core_ptr, {:#x}, \"{}\");", pc.val, "dii"); } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc = pc + 2; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); this->gen_raise_trap(tu, 0, 2); auto returnValue = std::make_tuple(CONT); tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC, 86); return returnValue; } /**************************************************************************** * end opcode definitions ****************************************************************************/ compile_ret_t illegal_intruction(virt_addr_t& pc, code_word_t instr, tu_builder& tu) { vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size()); pc = pc + ((instr & 3) == 3 ? 4 : 2); gen_raise_trap(tu, 0, 2); // illegal instruction trap vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size()); vm_impl::gen_trap_check(tu); return BRANCH; } // decoding functionality void populate_decoding_tree(decoding_tree_node* root) { // create submask for(auto instr : root->instrs) { root->submask &= instr.mask; } // put each instr according to submask&encoding into children for(auto instr : root->instrs) { bool foundMatch = false; for(auto child : root->children) { // use value as identifying trait if(child->value == (instr.value & root->submask)) { child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch) { decoding_tree_node* child = new decoding_tree_node(instr.value & root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); // call populate_decoding_tree for all children if(root->children.size() > 1) for(auto child : root->children) { populate_decoding_tree(child); } else { // sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } compile_func decode_instr(decoding_tree_node* node, code_word_t word) { if(!node->children.size()) { if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs) { if((instr.mask & word) == instr.value) return instr.op; } } else { for(auto child : node->children) { if(child->value == (node->submask & word)) { return decode_instr(child, word); } } } return nullptr; } }; template void debug_fn(CODE_WORD instr) { volatile CODE_WORD x = instr; instr = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH& core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr : instr_descr) { root->instrs.push_back(instr); } populate_decoding_tree(root); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t& pc, unsigned int& inst_cnt, tu_builder& tu) { // we fetch at max 4 byte, alignment is 2 enum { TRAP_ID = 1 << 16 }; code_word_t instr = 0; phys_addr_t paddr(pc); if(this->core.has_mmu()) paddr = this->core.virt2phys(pc); // TODO: re-add page handling // if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // auto res = this->core.read(paddr, 2, data); // if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // if ((insn & 0x3) == 0x3) { // this is a 32bit instruction // res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); // } // } else { auto res = this->core.read(paddr, 4, reinterpret_cast(&instr)); if(res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // } if(instr == 0x0000006f || (instr & 0xffff) == 0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' // curr pc on stack ++inst_cnt; auto f = decode_instr(root, instr); if(f == nullptr) { f = &this_class::illegal_intruction; } return (this->*f)(pc, instr, tu); } template void vm_impl::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) { tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id); tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits::max(), 32)); } template void vm_impl::gen_leave_trap(tu_builder& tu, unsigned lvl) { tu("leave_trap(core_ptr, {});", lvl); tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN)); tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits::max(), 32)); } template void vm_impl::gen_wait(tu_builder& tu, unsigned type) {} template void vm_impl::gen_trap_behavior(tu_builder& tu) { tu("trap_entry:"); this->gen_sync(tu, POST_SYNC, -1); tu("enter_trap(core_ptr, *trap_state, *pc, 0);"); tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits::max(), 32)); tu("return *next_pc;"); } } // namespace tgc5c template <> std::unique_ptr create(arch::tgc5c* core, unsigned short port, bool dump) { auto ret = new tgc5c::vm_impl(*core, dump); if(port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace tcc } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("tgc5c|m_p|tcc", [](unsigned port, void*) -> std::tuple { auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new tcc::tgc5c::vm_impl(*cpu, false); if(port != 0) debugger::server::run_server(vm, port); return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("tgc5c|mu_p|tcc", [](unsigned port, void*) -> std::tuple { auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new tcc::tgc5c::vm_impl(*cpu, false); if(port != 0) debugger::server::run_server(vm, port); return {cpu_ptr{cpu}, vm_ptr{vm}}; })}; } } // namespace iss