/******************************************************************************* * Copyright (C) 2021 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ <% def nativeTypeSize(int size){ if(size<=8) return 8; else if(size<=16) return 16; else if(size<=32) return 32; else return 64; } %> // clang-format off #include #include #include #include #include #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace interp { namespace ${coreDef.name.toLowerCase()} { using namespace iss::arch; using namespace iss::debugger; using namespace std::placeholders; struct memory_access_exception : public std::exception{ memory_access_exception(){} }; template class vm_impl : public iss::interp::vm_base { public: using traits = arch::traits; using super = typename iss::interp::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; using reg_t = typename traits::reg_t; using mem_type_e = typename traits::mem_type_e; using opcode_e = typename traits::opcode_e; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (super::tgt_adapter == nullptr) super::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return super::tgt_adapter; } protected: using this_class = vm_impl; using compile_ret_t = virt_addr_t; using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr); inline const char *name(size_t index){return indexcore.reg.trap_state = trap_val; this->template get_reg(traits::NEXT_PC) = std::numeric_limits::max(); } inline void leave(unsigned lvl){ this->core.leave_trap(lvl); } inline void wait(unsigned type){ this->core.wait_until(type); } using yield_t = boost::coroutines2::coroutine::push_type; using coro_t = boost::coroutines2::coroutine::pull_type; std::vector spawn_blocks; template::type> inline S sext(U from) { auto mask = (1ULL< ${it}<%}%> <%}%> private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct instruction_descriptor { size_t length; uint32_t value; uint32_t mask; typename arch::traits::opcode_e op; }; struct decoding_tree_node{ std::vector instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value){} }; decoding_tree_node* root {nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> {${instr.length}, ${instr.encoding}, ${instr.mask}, arch::traits::opcode_e::${instr.instruction.name}},<%}%> }}; iss::status fetch_ins(virt_addr_t pc, uint8_t * data){ if(this->core.has_mmu()) { auto phys_pc = this->core.virt2phys(pc); // if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err; // if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction // if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) // return iss::Err; // } else { if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err; // } } else { if (this->core.read(phys_addr_t(pc.access, pc.space, pc.val), 4, data) != iss::Ok) return iss::Err; } return iss::Ok; } void populate_decoding_tree(decoding_tree_node* root){ //create submask for(auto instr: root->instrs){ root->submask &= instr.mask; } //put each instr according to submask&encoding into children for(auto instr: root->instrs){ bool foundMatch = false; for(auto child: root->children){ //use value as identifying trait if(child->value == (instr.value&root->submask)){ child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch){ decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); //call populate_decoding_tree for all children if(root->children.size() >1) for(auto child: root->children){ populate_decoding_tree(child); } else{ //sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } typename arch::traits::opcode_e decode_instr(decoding_tree_node* node, code_word_t word){ if(!node->children.size()){ if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs){ if((instr.mask&word) == instr.value) return instr.op; } } else{ for(auto child : node->children){ if (child->value == (node->submask&word)){ return decode_instr(child, word); } } } return arch::traits::opcode_e::MAX_OPCODE; } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } // according to // https://stackoverflow.com/questions/8871204/count-number-of-1s-in-binary-representation #ifdef __GCC__ constexpr size_t bit_count(uint32_t u) { return __builtin_popcount(u); } #elif __cplusplus < 201402L constexpr size_t uCount(uint32_t u) { return u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); } constexpr size_t bit_count(uint32_t u) { return ((uCount(u) + (uCount(u) >> 3)) & 030707070707) % 63; } #else constexpr size_t bit_count(uint32_t u) { size_t uCount = u - ((u >> 1) & 033333333333) - ((u >> 2) & 011111111111); return ((uCount + (uCount >> 3)) & 030707070707) % 63; } #endif template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr:instr_descr){ root->instrs.push_back(instr); } populate_decoding_tree(root); } inline bool is_count_limit_enabled(finish_cond_e cond){ return (cond & finish_cond_e::COUNT_LIMIT) == finish_cond_e::COUNT_LIMIT; } inline bool is_jump_to_self_enabled(finish_cond_e cond){ return (cond & finish_cond_e::JUMP_TO_SELF) == finish_cond_e::JUMP_TO_SELF; } template typename vm_base::virt_addr_t vm_impl::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){ auto pc=start; auto* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); auto* NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); auto& trap_state = this->core.reg.trap_state; auto& icount = this->core.reg.icount; auto& cycle = this->core.reg.cycle; auto& instret = this->core.reg.instret; auto& instr = this->core.reg.instruction; // we fetch at max 4 byte, alignment is 2 auto *const data = reinterpret_cast(&instr); while(!this->core.should_stop() && !(is_count_limit_enabled(cond) && icount >= icount_limit)){ if(fetch_ins(pc, data)!=iss::Ok){ this->do_sync(POST_SYNC, std::numeric_limits::max()); pc.val = super::core.enter_trap(std::numeric_limits::max(), pc.val, 0); } else { if (is_jump_to_self_enabled(cond) && (instr == 0x0000006f || (instr&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0' auto inst_id = decode_instr(root, instr); // pre execution stuff this->core.reg.last_branch = 0; if(this->sync_exec && PRE_SYNC) this->do_sync(PRE_SYNC, static_cast(inst_id)); try{ switch(inst_id){<%instructions.eachWithIndex{instr, idx -> %> case arch::traits::opcode_e::${instr.name}: { <%instr.fields.eachLine{%>${it} <%}%>if(this->disass_enabled){ /* generate console output when executing the command */<%instr.disass.eachLine{%> ${it}<%}%> } // used registers<%instr.usedVariables.each{ k,v-> if(v.isArray) {%> auto* ${k} = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::${k}0]);<% }else{ %> auto* ${k} = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::${k}]); <%}}%>// calculate next pc value *NEXT_PC = *PC + ${instr.length/8}; // execute instruction<%instr.behavior.eachLine{%> ${it}<%}%> break; }// @suppress("No break at end of case")<%}%> default: { *NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2); raise(0, 2); } } }catch(memory_access_exception& e){} // post execution stuff process_spawn_blocks(); if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast(inst_id)); // if(!this->core.reg.trap_state) // update trap state if there is a pending interrupt // this->core.reg.trap_state = this->core.reg.pending_trap; // trap check if(trap_state!=0){ super::core.enter_trap(trap_state, pc.val, instr); } else { icount++; instret++; } cycle++; pc.val=*NEXT_PC; this->core.reg.PC = this->core.reg.NEXT_PC; this->core.reg.trap_state = this->core.reg.pending_trap; } } return pc; } } // namespace ${coreDef.name.toLowerCase()} template <> std::unique_ptr create(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { auto ret = new ${coreDef.name.toLowerCase()}::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace interp } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|interp", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t, arch::traits::reg_t)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|interp", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new interp::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t, arch::traits::reg_t)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }) }; } } // clang-format on