/******************************************************************************* * Copyright (C) 2017, MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Contributors: * eyck@minres.com - initial API and implementation ******************************************************************************/ #ifndef _RISCV_CORE_H_ #define _RISCV_CORE_H_ #include #include #include #include #include #include #include namespace iss { namespace arch { enum { tohost_dflt = 0xF0001000, fromhost_dflt = 0xF0001040 }; enum csr_name { /* user-level CSR */ // User Trap Setup ustatus=0x000, uie=0x004, utvec=0x005, // User Trap Handling uscratch=0x040, uepc=0x041, ucause=0x042, utval=0x043, uip=0x044, // User Floating-Point CSRs fflags=0x001, frm=0x002, fcsr=0x003, // User Counter/Timers cycle=0xC00, time=0xC01, instret=0xC02, hpmcounter3=0xC03, hpmcounter4=0xC04, /*...*/ hpmcounter31=0xC1F, cycleh=0xC80, timeh=0xC81, instreth=0xC82, hpmcounter3h=0xC83, hpmcounter4h=0xC84, /*...*/ hpmcounter31h=0xC9F, /* supervisor-level CSR */ // Supervisor Trap Setup sstatus=0x100, sedeleg=0x102, sideleg=0x103, sie=0x104, stvec=0x105, scounteren=0x106, // Supervisor Trap Handling sscratch=0x140, sepc=0x141, scause=0x142, stval=0x143, sip=0x144, // Supervisor Protection and Translation satp=0x180, /* machine-level CSR */ // Machine Information Registers mvendorid=0xF11, marchid=0xF12, mimpid=0xF13, mhartid=0xF14, // Machine Trap Setup mstatus=0x300, misa=0x301, medeleg=0x302, mideleg=0x303, mie=0x304, mtvec=0x305, mcounteren=0x306, // Machine Trap Handling mscratch=0x340, mepc=0x341, mcause=0x342, mtval=0x343, mip=0x344, // Machine Protection and Translation pmpcfg0=0x3A0, pmpcfg1=0x3A1, pmpcfg2=0x3A2, pmpcfg3=0x3A3, pmpaddr0=0x3B0, pmpaddr1=0x3B1, /*...*/ pmpaddr15=0x3BF, // Machine Counter/Timers mcycle=0xB00, minstret=0xB02, mhpmcounter3=0xB03, mhpmcounter4=0xB04, /*...*/ mhpmcounter31=0xB1F, mcycleh=0xB80, minstreth=0xB82, mhpmcounter3h=0xB83, mhpmcounter4h=0xB84, /*...*/ mhpmcounter31h=0xB9F, // Machine Counter Setup mhpmevent3=0x323, mhpmevent4=0x324, /*...*/ mhpmevent31=0x33F, // Debug/Trace Registers (shared with Debug Mode) tselect=0x7A0, tdata1=0x7A1, tdata2=0x7A2, tdata3=0x7A3, // Debug Mode Registers dcsr=0x7B0, dpc=0x7B1, dscratch=0x7B2 }; char lvl[]={'U', 'S', 'H', 'M'}; const char* trap_str[] = { "Instruction address misaligned", "Instruction access fault", "Illegal instruction", "Breakpoint", "Load address misaligned", "Load access fault", "Store/AMO address misaligned", "Store/AMO access fault", "Environment call from U-mode", "Environment call from S-mode", "Reserved", "Environment call from M-mode", "Instruction page fault", "Load page fault", "Reserved", "Store/AMO page fault" }; const char* irq_str[] = { "User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt", "User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt" }; namespace { enum { PGSHIFT=12, PTE_PPN_SHIFT=10, // page table entry (PTE) fields PTE_V = 0x001, // Valid PTE_R = 0x002, // Read PTE_W = 0x004, // Write PTE_X = 0x008, // Execute PTE_U = 0x010, // User PTE_G = 0x020, // Global PTE_A = 0x040, // Accessed PTE_D = 0x080, // Dirty PTE_SOFT = 0x300 // Reserved for Software }; template inline bool PTE_TABLE(T PTE){ return (((PTE) & (PTE_V | PTE_R | PTE_W | PTE_X)) == PTE_V); } enum { PRIV_U=0, PRIV_S=1, PRIV_M=3}; enum { ISA_A=1, ISA_B=1<<1, ISA_C=1<<2, ISA_D=1<<3, ISA_E=1<<4, ISA_F=1<<5, ISA_G=1<<6, ISA_I=1<<8, ISA_M=1<<12, ISA_N=1<<13, ISA_Q=1<<16, ISA_S=1<<18, ISA_U=1<<20}; struct vm_info { int levels; int idxbits; int ptesize; uint64_t ptbase; }; struct trap_load_access_fault: public trap_access { trap_load_access_fault(uint64_t badaddr) : trap_access(5<<16, badaddr) {} }; struct illegal_instruction_fault: public trap_access { illegal_instruction_fault(uint64_t badaddr) : trap_access(2<<16, badaddr) {} }; struct trap_instruction_page_fault: public trap_access { trap_instruction_page_fault(uint64_t badaddr) : trap_access(12<<16, badaddr) {} }; struct trap_load_page_fault: public trap_access { trap_load_page_fault(uint64_t badaddr) : trap_access(13<<16, badaddr) {} }; struct trap_store_page_fault: public trap_access { trap_store_page_fault(uint64_t badaddr) : trap_access(15<<16, badaddr) {} }; } typedef union { uint32_t val; struct /*mstatus*/ { uint32_t SD:1, //SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR (XS==11))) _WPRI3:8, //unused TSR:1, //Trap SRET TW:1, //Timeout Wait TVM:1, //Trap Virtual Memory MXR:1, //Make eXecutable Readable SUM:1, //permit Supervisor User Memory access MPRV:1, //Modify PRiVilege XS:2, //status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty FS:2, //floating-point unit status Off/Initial/Clean/Dirty MPP:2, // machine previous privilege _WPRI2:2, // unused SPP:1, // supervisor previous privilege MPIE:1, //previous machine interrupt-enable _WPRI1:1, // unused SPIE:1, //previous supervisor interrupt-enable UPIE:1, //previous user interrupt-enable MIE:1, //machine interrupt-enable _WPRI0:1, // unused SIE:1, //supervisor interrupt-enable UIE:1; //user interrupt-enable } m; struct /*sstatus*/ { uint32_t SD:1, _WPRI4:11, MXR:1, SUM:1, _WPRI3:1, XS:2, FS:2, _WPRI2:4, SPP:1, _WPRI1:2, SPIE:1, UPIE:1, _WPRI0:2, SIE:1, UIE:1; } s; struct /*ustatus*/ { uint32_t SD:1, _WPRI4:11, MXR:1, SUM:1, _WPRI3:1, XS:2, FS:2, _WPRI2:8, UPIE:1, _WPRI0:3, UIE:1; } u; } mstatus32_t; typedef union { uint64_t val; struct /*mstatus*/ { uint64_t SD:1, // SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR (XS==11))) _WPRI4:27,// unused SXL:2, // value of XLEN for S-mode UXL:2, // value of XLEN for U-mode _WPRI3:9, // unused TSR:1, // Trap SRET TW:1, // Timeout Wait TVM:1, // Trap Virtual Memory MXR:1, // Make eXecutable Readable SUM:1, // permit Supervisor User Memory access MPRV:1, // Modify PRiVilege XS:2, // status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty FS:2, // floating-point unit status Off/Initial/Clean/Dirty MPP:2, // machine previous privilege _WPRI2:2, // unused SPP:1, // supervisor previous privilege MPIE:1, // previous machine interrupt-enable _WPRI1:1, // unused SPIE:1, // previous supervisor interrupt-enable UPIE:1, // previous user interrupt-enable MIE:1, // machine interrupt-enable _WPRI0:1, // unused SIE:1, // supervisor interrupt-enable UIE:1; // ‚user interrupt-enable } m; struct /*sstatus*/ { uint64_t SD:1, _WPRI5:29,// unused UXL:2, // value of XLEN for U-mode _WPRI4:12, MXR:1, SUM:1, _WPRI3:1, XS:2, FS:2, _WPRI2:4, SPP:1, _WPRI1:2, SPIE:1, UPIE:1, _WPRI0:2, SIE:1, UIE:1; } s; struct /*ustatus*/ { uint32_t SD:1, _WPRI4:29,// unused UXL:2, // value of XLEN for U-mode _WPRI3:12, MXR:1, SUM:1, _WPRI2:1, XS:2, FS:2, _WPRI1:8, UPIE:1, _WPRI0:3, UIE:1; } u; } mstatus64_t; template inline vm_info decode_vm_info(uint32_t state, uint64_t sptbr); template<> inline vm_info decode_vm_info<32u>(uint32_t state, uint64_t sptbr){ if (state == PRIV_M) { return {0, 0, 0, 0}; } else if (state <= PRIV_S) { switch (bit_sub<31,1>(sptbr)) { case 0: // off return {0, 0, 0, 0}; case 1: // SV32 return {2, 10, 4, bit_sub<0, 22>(sptbr) << PGSHIFT}; default: abort(); } } else { abort(); } return {0, 0, 0, 0}; // dummy } template<> inline vm_info decode_vm_info<64u>(uint32_t state, uint64_t sptbr){ if (state == PRIV_M) { return {0, 0, 0, 0}; } else if (state <= PRIV_S) { switch (bit_sub<60, 4>(sptbr)) { case 0: // off return {0, 0, 0, 0}; case 8: // SV39 return {3, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; case 9: // SV48 return {4, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; case 10: // SV57 return {5, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; case 11: // SV64 return {6, 9, 8, bit_sub<0, 44>(sptbr) << PGSHIFT}; default: abort(); } } else { abort(); } return {0, 0, 0, 0}; // dummy } constexpr uint32_t get_mask(unsigned priv_lvl, uint32_t mask){ switch(priv_lvl){ case PRIV_U: return mask&0x80000011UL; // 0b1000 0000 0000 0000 0000 0000 0001 0001 case PRIV_S: return mask&0x800de133UL; // 0b1000 0000 0000 1101 1110 0001 0011 0011 default: return mask&0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011 } } constexpr uint64_t get_mask(unsigned priv_lvl, uint64_t mask){ switch(priv_lvl){ case PRIV_U: return mask&0x8000000000000011ULL; //0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011 case PRIV_S: return mask&0x80000003000de133ULL; //0b1...0 0011 0000 0000 0000 1101 1110 0001 0011 0011 default: return mask&0x8000000f007ff9ddULL; //0b1...0 1111 0000 0000 0111 1111 1111 1001 1011 1011 } } constexpr uint32_t get_misa(uint32_t mask){ return (1UL<<30)| ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M ; } constexpr uint64_t get_misa(uint64_t mask){ return (2ULL<<62)| ISA_I | ISA_M | ISA_A | ISA_U | ISA_S | ISA_M ; } template struct riscv_core: public BASE { using super = BASE; using this_class = riscv_core; using virt_addr_t= typename super::virt_addr_t; using phys_addr_t= typename super::phys_addr_t; using reg_t = typename super::reg_t; using addr_t = typename super::addr_t; using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t&); using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t); const typename super::reg_t PGSIZE = 1 << PGSHIFT; const typename super::reg_t PGMASK = PGSIZE-1; constexpr reg_t get_irq_mask(size_t mode){ const reg_t m[4] = { 0b000100010001, //U mode 0b001100110011, // S-mode 0, 0b101110111011 // M-mode }; return m[mode]; } riscv_core(); virtual ~riscv_core(); virtual void load_file(std::string name, int type=-1); virtual phys_addr_t v2p(const iss::addr_t& addr); virtual iss::status read(const iss::addr_t& addr, unsigned length, uint8_t* const data) override; virtual iss::status write(const iss::addr_t& addr, unsigned length, const uint8_t* const data) override; virtual uint64_t enter_trap(uint64_t flags) override {return riscv_core::enter_trap(flags, fault_data);} virtual uint64_t enter_trap(uint64_t flags, uint64_t addr) override; virtual uint64_t leave_trap(uint64_t flags) override; virtual void wait_until(uint64_t flags) override; virtual std::string get_additional_disass_info(){ std::stringstream s; auto status = csr[mstatus]; s<<"[p:"<reg.machine_state]<<";s:0x"<reg.icount<<"]"; return s.str(); }; protected: virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t* const data); virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data); virtual iss::status read_csr(unsigned addr, reg_t& val); virtual iss::status write_csr(unsigned addr, reg_t val); uint64_t tohost = tohost_dflt; uint64_t fromhost = fromhost_dflt; reg_t fault_data; using mem_type = util::sparse_array; using csr_type = util::sparse_array::reg_t, 1ULL<<12, 12>; using csr_page_type = typename csr_type::page_type; mem_type mem; csr_type csr; unsigned to_host_wr_cnt=0; std::stringstream uart_buf; std::unordered_map ptw; std::unordered_map atomic_reservation; std::unordered_map csr_rd_cb; std::unordered_map csr_wr_cb; private: iss::status read_cycle(unsigned addr, reg_t& val); iss::status read_status(unsigned addr, reg_t& val); iss::status write_status(unsigned addr, reg_t val); iss::status read_ie(unsigned addr, reg_t& val); iss::status write_ie(unsigned addr, reg_t val); iss::status read_ip(unsigned addr, reg_t& val); iss::status write_ip(unsigned addr, reg_t val); iss::status read_satp(unsigned addr, reg_t& val); iss::status write_satp(unsigned addr, reg_t val); void check_interrupt(); }; template riscv_core::riscv_core() { csr[misa]=traits::XLEN==32?1ULL<<(traits::XLEN-2):2ULL<<(traits::XLEN-2); uart_buf.str(""); // read-only registers csr_wr_cb[misa]=nullptr; for(unsigned addr=mcycle; addr<=hpmcounter31; ++addr) csr_wr_cb[addr]=nullptr; for(unsigned addr=mcycleh; addr<=hpmcounter31h; ++addr) csr_wr_cb[addr]=nullptr; // special handling csr_rd_cb[mcycle]=&riscv_core::read_cycle; csr_rd_cb[mcycleh]=&riscv_core::read_cycle; csr_rd_cb[minstret]=&riscv_core::read_cycle; csr_rd_cb[minstreth]=&riscv_core::read_cycle; csr_rd_cb[mstatus]=&riscv_core::read_status; csr_wr_cb[mstatus]=&riscv_core::write_status; csr_rd_cb[sstatus]=&riscv_core::read_status; csr_wr_cb[sstatus]=&riscv_core::write_status; csr_rd_cb[ustatus]=&riscv_core::read_status; csr_wr_cb[ustatus]=&riscv_core::write_status; csr_rd_cb[mip]=&riscv_core::read_ip; csr_wr_cb[mip]=&riscv_core::write_ip; csr_rd_cb[sip]=&riscv_core::read_ip; csr_wr_cb[sip]=&riscv_core::write_ip; csr_rd_cb[uip]=&riscv_core::read_ip; csr_wr_cb[uip]=&riscv_core::write_ip; csr_rd_cb[mie]=&riscv_core::read_ie; csr_wr_cb[mie]=&riscv_core::write_ie; csr_rd_cb[sie]=&riscv_core::read_ie; csr_wr_cb[sie]=&riscv_core::write_ie; csr_rd_cb[uie]=&riscv_core::read_ie; csr_wr_cb[uie]=&riscv_core::write_ie; csr_rd_cb[satp]=&riscv_core::read_satp; csr_wr_cb[satp]=&riscv_core::write_satp; } template riscv_core::~riscv_core() { } template void riscv_core::load_file(std::string name, int type) { FILE* fp = fopen(name.c_str(), "r"); if(fp){ char buf[5]; auto n = fread(buf, 1,4,fp); if(n!=4) throw std::runtime_error("input file has insufficient size"); buf[4]=0; if(strcmp(buf+1, "ELF")==0){ fclose(fp); //Create elfio reader ELFIO::elfio reader; // Load ELF data if ( !reader.load( name ) ) throw std::runtime_error("could not process elf file"); // check elf properties //TODO: fix ELFCLASS like: // if ( reader.get_class() != ELFCLASS32 ) throw std::runtime_error("wrong elf class in file"); if ( reader.get_type() != ET_EXEC ) throw std::runtime_error("wrong elf type in file"); //TODO: fix machine type like: // if ( reader.get_machine() != EM_RISCV ) throw std::runtime_error("wrong elf machine in file"); for (const auto pseg :reader.segments ) { const auto fsize=pseg->get_file_size(); // 0x42c/0x0 const auto seg_data=pseg->get_data(); if(fsize>0){ this->write(typed_addr_t(iss::DEBUG_WRITE, traits::MEM, pseg->get_virtual_address()), fsize, reinterpret_cast(seg_data)); } } for (const auto sec :reader.sections ) { if(sec->get_name() == ".tohost"){ tohost=sec->get_address(); fromhost=tohost+0x40; } } return; } } } template iss::status riscv_core::read(const iss::addr_t& addr, unsigned length, uint8_t* const data){ #ifndef NDEBUG if(addr.type& iss::DEBUG){ LOG(DEBUG)<<"debug read of "<::MEM:{ if((addr.type&(iss::ACCESS_TYPE-iss::DEBUG))==iss::FETCH && (addr.val&0x1) == 1){ fault_data=addr.val; if((addr.type&iss::DEBUG)) throw trap_access(0, addr.val); this->reg.trap_state=(1<<31); // issue trap 0 return iss::Err; } try { if((addr.val&~PGMASK) != ((addr.val+length-1)&~PGMASK)){ // we may cross a page boundary vm_info vm = decode_vm_info::XLEN>(this->reg.machine_state, csr[satp]); if(vm.levels!=0){ // VM is active auto split_addr = (addr.val+length)&~PGMASK; auto len1=split_addr-addr.val; auto res = read(addr, len1, data); if(res==iss::Ok) res = read(iss::addr_t{addr.type, addr.space, split_addr}, length-len1, data+len1); return res; } } phys_addr_t paddr = (addr.type&iss::ADDRESS_TYPE)==iss::PHYSICAL?addr:v2p(addr); if((paddr.val +length)>mem.size()) return iss::Err; switch(paddr.val){ case 0x0200BFF8:{ // CLINT base, mtime reg uint64_t mtime = this->reg.icount>>12/*12*/; std::copy((uint8_t*)&mtime, ((uint8_t*)&mtime)+length, data); } break; case 0x10008000:{ const mem_type::page_type& p = mem(paddr.val/mem.page_size); uint64_t offs=paddr.val&mem.page_addr_mask; std::copy( p.data() + offs, p.data() + offs+length, data); if(this->reg.icount>30000) data[3]|=0x80; } break; default:{ return read_mem(paddr, length, data); } } } catch(trap_access& ta){ this->reg.trap_state=(1<<31)|ta.id; return iss::Err; } } break; case traits::CSR:{ if(length!=sizeof(reg_t)) return iss::Err; return read_csr(addr.val, *reinterpret_cast(data)); } break; case traits::FENCE:{ if((addr.val +length)>mem.size()) return iss::Err; switch(addr.val){ case 2: // SFENCE:VMA lower case 3:{// SFENCE:VMA upper auto status = csr[mstatus]; auto tvm = status&(1<<20); if(this->reg.machine_state==PRIV_S & tvm!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; return iss::Err; } return iss::Ok; } } } break; case traits::RES:{ auto it = atomic_reservation.find(addr.val); if(it!= atomic_reservation.end() && (*it).second != 0){ memset(data, 0xff, length); atomic_reservation.erase(addr.val); } else memset(data, 0, length); } break; default: return iss::Err; //assert("Not supported"); } return iss::Ok; } template iss::status riscv_core::write(const iss::addr_t& addr, unsigned length, const uint8_t* const data){ #ifndef NDEBUG const char* prefix = addr.type & iss::DEBUG?"debug ":""; switch(length){ case 8: LOG(DEBUG)<::MEM:{ phys_addr_t paddr = (addr.type&iss::ADDRESS_TYPE)==iss::PHYSICAL?addr:v2p(addr); if((paddr.val +length)>mem.size()) return iss::Err; switch(paddr.val){ case 0x10013000: // UART0 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg uart_buf<<(char)data[0]; if(((char)data[0])=='\n' || data[0]==0){ // LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send '"<::CSR:{ if(length!=sizeof(reg_t)) return iss::Err; return write_csr(addr.val, *reinterpret_cast(data)); } break; case traits::FENCE:{ if((addr.val +length)>mem.size()) return iss::Err; switch(addr.val){ case 2: case 3:{ ptw.clear(); auto status = csr[mstatus]; auto tvm = status&(1<<20); if(this->reg.machine_state==PRIV_S & tvm!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; return iss::Err; } return iss::Ok; } } } break; case traits::RES:{ atomic_reservation[addr.val] = data[0]; } break; default: return iss::Err; } return iss::Ok; } catch(trap_access& ta){ this->reg.trap_state=(1<<31)|ta.id; return iss::Err; } } template iss::status riscv_core::read_csr(unsigned addr, reg_t& val){ if(addr >= csr.size()) return iss::Err; auto it = csr_rd_cb.find(addr); if(it == csr_rd_cb.end()){ val=csr[addr&csr.page_addr_mask]; return iss::Ok; } rd_csr_f f=it->second; if(f==nullptr) throw illegal_instruction_fault(this->fault_data); return (this->*f)(addr, val); } template iss::status riscv_core::write_csr(unsigned addr, reg_t val){ if(addr>=csr.size()) return iss::Err; auto it = csr_wr_cb.find(addr); if(it == csr_wr_cb.end()){ csr[addr&csr.page_addr_mask] = val; return iss::Ok; } wr_csr_f f=it->second; if(f==nullptr) throw illegal_instruction_fault(this->fault_data); return (this->*f)(addr, val); } template iss::status riscv_core::read_cycle(unsigned addr, reg_t& val) { if( addr== mcycle) { val = static_cast(this->reg.icount); }else if(addr==mcycleh) { if(sizeof(typename traits::reg_t)!=4) return iss::Err; val = static_cast((this->reg.icount)>>32); } return iss::Ok; } template iss::status riscv_core::read_status(unsigned addr, reg_t& val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); auto mask = get_mask(req_priv_lvl, (reg_t) (std::numeric_limits::max())); val = csr[mstatus] & mask; return iss::Ok; } template iss::status riscv_core::write_status(unsigned addr, reg_t val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); auto mask=get_mask(req_priv_lvl, (reg_t)std::numeric_limits::max()); auto old_val=csr[mstatus]; auto new_val = (old_val&~mask) |(val&mask); csr[mstatus] = new_val; check_interrupt(); return iss::Ok; } template iss::status riscv_core::read_ie(unsigned addr, reg_t& val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); val = csr[mie]; if(addr iss::status riscv_core::write_ie(unsigned addr, reg_t val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); auto mask=get_irq_mask(req_priv_lvl); csr[mie] = (csr[mie] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_core::read_ip(unsigned addr, reg_t& val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); val = csr[mie]; if(addr iss::status riscv_core::write_ip(unsigned addr, reg_t val) { auto req_priv_lvl=addr>>8; if(this->reg.machine_statefault_data); auto mask=get_irq_mask(req_priv_lvl); csr[mip] = (csr[mip] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_core::read_satp(unsigned addr, reg_t& val){ auto status = csr[mstatus]; auto tvm = status&(1<<20); if(this->reg.machine_state==PRIV_S & tvm!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; return iss::Err; } val = csr[satp]; return iss::Ok; } template iss::status riscv_core::write_satp(unsigned addr, reg_t val){ auto status = csr[mstatus]; auto tvm = status&(1<<20); if(this->reg.machine_state==PRIV_S & tvm!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; return iss::Err; } csr[satp] = val; return iss::Ok; } template iss::status riscv_core::read_mem(phys_addr_t addr, unsigned length, uint8_t* const data) { const auto& p = mem(addr.val/mem.page_size); auto offs=addr.val&mem.page_addr_mask; std::copy(p.data() + offs, p.data() + offs+length, data); return iss::Ok; } template iss::status riscv_core::write_mem(phys_addr_t addr, unsigned length, const uint8_t* const data) { mem_type::page_type& p = mem(addr.val/mem.page_size); std::copy(data, data+length, p.data()+(addr.val&mem.page_addr_mask)); // tohost handling in case of riscv-test if((addr.type & iss::DEBUG)==0){ auto tohost_upper = (traits::XLEN==32 && addr.val == (tohost+4)) || (traits::XLEN==64 && addr.val == tohost); auto tohost_lower = (traits::XLEN==32 && addr.val == tohost) || (traits::XLEN==64 && addr.val == tohost); if(tohost_lower || tohost_upper){ uint64_t hostvar = *reinterpret_cast(p.data()+(tohost&mem.page_addr_mask)); if(tohost_upper || (tohost_lower && to_host_wr_cnt>0)){ switch(hostvar>>48){ case 0: (hostvar!=0x1?LOG(FATAL):LOG(INFO))<<"tohost value is 0x"<(hostvar & 0xff); if(c=='\n' || c==0){ LOG(INFO)<<"tohost send '"<::XLEN==32 && addr.val == fromhost+4) || (traits::XLEN==64 && addr.val == fromhost)){ uint64_t fhostvar = *reinterpret_cast(p.data()+(fromhost&mem.page_addr_mask)); *reinterpret_cast(p.data()+(tohost&mem.page_addr_mask)) = fhostvar; } } return iss::Ok; } template void riscv_core::check_interrupt(){ auto status = csr[mstatus]; auto ip = csr[mip]; auto ie = csr[mie]; auto ideleg = csr[mideleg]; // Multiple simultaneous interrupts and traps at the same privilege level are handled in the following decreasing priority order: // external interrupts, software interrupts, timer interrupts, then finally any synchronous traps. auto ena_irq=ip&ie; auto mie = (csr[mstatus]>>3)&1; auto m_enabled = this->reg.machine_state < PRIV_M || (this->reg.machine_state == PRIV_M && mie); auto enabled_interrupts = m_enabled?ena_irq & ~ideleg :0; if (enabled_interrupts == 0){ auto sie = (csr[mstatus]>>1)&1; auto s_enabled = this->reg.machine_state < PRIV_S || (this->reg.machine_state == PRIV_S && sie); enabled_interrupts = s_enabled?ena_irq & ideleg : 0; } if (enabled_interrupts!=0){ int res = 0; while ((enabled_interrupts & 1) == 0) enabled_interrupts >>= 1, res++; this->reg.pending_trap = res<<16 | 1; } } template typename riscv_core::phys_addr_t riscv_core::v2p(const iss::addr_t& addr){ const uint64_t tmp = reg_t(1) << (traits::XLEN-1); const uint64_t msk = tmp | (tmp-1); if(addr.space!=traits::MEM){ //non-memory access phys_addr_t ret(addr); ret.val &= msk; return ret; } const reg_t mstatus_r = csr[mstatus]; const access_type type = (access_type)(addr.getAccessType()&~iss::DEBUG); uint32_t mode =type != iss::FETCH && bit_sub<17,1>(mstatus_r)? // MPRV mode = bit_sub<11,2>(mstatus_r):// MPV this->reg.machine_state; const vm_info vm = decode_vm_info::XLEN>(mode, csr[satp]); if (vm.levels == 0){ phys_addr_t ret(addr); ret.val &= msk; return ret; } const bool s_mode = mode == PRIV_S; const bool sum = bit_sub<18,1>(mstatus_r); // MSTATUS_SUM); const bool mxr = bit_sub<19,1>(mstatus_r);// MSTATUS_MXR); auto it = ptw.find(addr.val >> PGSHIFT); if(it!=ptw.end()){ const reg_t pte=it->second; const reg_t ad = PTE_A | ((type == iss::WRITE) * PTE_D); #ifdef RISCV_ENABLE_DIRTY // set accessed and possibly dirty bits. *(uint32_t*)ppte |= ad; return {addr.getAccessType(), addr.space, (pte&(~PGMASK)) | (addr.val & PGMASK)}; #else // take exception if access or possibly dirty bit is not set. if ((pte & ad) == ad) return {addr.getAccessType(), addr.space, (pte&(~PGMASK)) | (addr.val & PGMASK)}; else ptw.erase(it); #endif } else { // verify bits xlen-1:va_bits-1 are all equal const int va_bits = PGSHIFT + vm.levels * vm.idxbits; const reg_t mask = (reg_t(1) << (traits::XLEN> - (va_bits-1))) - 1; const reg_t masked_msbs = (addr.val >> (va_bits-1)) & mask; const int levels = (masked_msbs != 0 && masked_msbs != mask)? 0: vm.levels; reg_t base = vm.ptbase; for (int i = levels - 1; i >= 0; i--) { const int ptshift = i * vm.idxbits; const reg_t idx = (addr.val >> (PGSHIFT + ptshift)) & ((1 << vm.idxbits) - 1); // check that physical address of PTE is legal reg_t pte = 0; const uint8_t res = this->read(phys_addr_t(addr.getAccessType(), traits::MEM, base + idx * vm.ptesize), vm.ptesize, (uint8_t*)&pte); if (res!=0) throw trap_load_access_fault(addr.val); const reg_t ppn = pte >> PTE_PPN_SHIFT; if (PTE_TABLE(pte)) { // next level of page table base = ppn << PGSHIFT; } else if ((pte & PTE_U) ? s_mode && (type == iss::FETCH || !sum) : !s_mode) { break; } else if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W))) { break; } else if (type == iss::FETCH ? !(pte & PTE_X) : type == iss::READ ? !(pte & PTE_R) && !(mxr && (pte & PTE_X)) : !((pte & PTE_R) && (pte & PTE_W))) { break; } else if ((ppn & ((reg_t(1) << ptshift) - 1)) != 0) { break; } else { const reg_t ad = PTE_A | ((type == iss::WRITE) * PTE_D); #ifdef RISCV_ENABLE_DIRTY // set accessed and possibly dirty bits. *(uint32_t*)ppte |= ad; #else // take exception if access or possibly dirty bit is not set. if ((pte & ad) != ad) break; #endif // for superpage mappings, make a fake leaf PTE for the TLB's benefit. const reg_t vpn = addr.val >> PGSHIFT; const reg_t value = (ppn | (vpn & ((reg_t(1) << ptshift) - 1))) << PGSHIFT; const reg_t offset = addr.val & PGMASK; ptw[vpn]=value | (pte&0xff); return {addr.getAccessType(), addr.space, value | offset}; } } } switch (type) { case FETCH: this->fault_data=addr.val; throw trap_instruction_page_fault(addr.val); case READ: this->fault_data=addr.val; throw trap_load_page_fault(addr.val); case WRITE: this->fault_data=addr.val; throw trap_store_page_fault(addr.val); default: abort(); } } template uint64_t riscv_core::enter_trap(uint64_t flags, uint64_t addr) { auto cur_priv=this->reg.machine_state; // calculate and write mcause val auto trap_id=flags&0xffff; auto cause = (flags>>16)&0x7fff; if(trap_id==0 && cause==11) cause = 0x8+cur_priv; // adjust environment call cause // calculate effective privilege level auto new_priv=PRIV_M; if(trap_id==0){ // exception if(cur_priv!=PRIV_M && ((csr[medeleg]>>cause)&0x1)!=0) new_priv=(csr[sedeleg]>>cause)&0x1?PRIV_U:PRIV_S; // store ret addr in xepc register csr[uepc|(new_priv<<8)]=static_cast(addr); // store actual address instruction of exception /* * write mtval if new_priv=M_MODE, spec says: * When a hardware breakpoint is triggered, or an instruction-fetch, load, or store address-misaligned, * access, or page-fault exception occurs, mtval is written with the faulting effective address. */ csr[utval|(new_priv<<8)]=fault_data; fault_data=0; }else{ if(cur_priv!=PRIV_M && ((csr[mideleg]>>cause)&0x1)!=0) new_priv=(csr[sideleg]>>cause)&0x1?PRIV_U:PRIV_S; csr[uepc|(new_priv<<8)]=this->reg.NEXT_PC; // store next address if interrupt this->reg.pending_trap=0; } csr[ucause|(new_priv<<8)]=cause; // update mstatus // xPP field of mstatus is written with the active privilege mode at the time of the trap; the x PIE field of mstatus // is written with the value of the active interrupt-enable bit at the time of the trap; and the x IE field of mstatus // is cleared auto status=csr[mstatus]; auto xie = (status>>cur_priv) & 1; // store the actual privilege level in yPP switch(new_priv){ case PRIV_M: status&=~(3<<11); status|=(cur_priv&0x3)<<11; break; case PRIV_S: status&=~(1<<8); status|=(cur_priv&0x1)<<8; break; default: break; } // store interrupt enable flags status&=~(1<<(new_priv+4) | 1<reg.NEXT_PC=ivec & ~0x1UL; if((ivec&0x1)==1 && trap_id!=0) this->reg.NEXT_PC+=4*cause; // reset trap state this->reg.machine_state=new_priv; this->reg.trap_state=0; char buffer[32]; sprintf(buffer, "0x%016lx", addr); if(trap_id) el::Loggers::getLogger("disass", true)->info("Interrupt %v with cause '%v' at address %v occurred, changing privilege level from %v to %v", trap_id, irq_str[cause], buffer , lvl[cur_priv], lvl[new_priv]); else el::Loggers::getLogger("disass", true)->info("Trap %v with cause '%v' at address %v occurred, changing privilege level from %v to %v", trap_id, trap_str[cause], buffer , lvl[cur_priv], lvl[new_priv]); return this->reg.NEXT_PC; } template uint64_t riscv_core::leave_trap(uint64_t flags) { auto cur_priv=this->reg.machine_state; auto inst_priv=flags&0x3; auto status=csr[mstatus]; auto ppl = inst_priv; //previous privilege level auto tsr = status&(1<<22); if(cur_priv==PRIV_S && inst_priv==PRIV_S && tsr!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; return this->reg.PC; } // pop the relevant lower-privilege interrupt enable and privilege mode stack switch(inst_priv){ case PRIV_M: ppl=(status>>11)&0x3; status&=~(0x3<<11); // clear mpp to U mode break; case PRIV_S: ppl=(status>>8)&1; status&=~(1<<8); // clear spp to U mode break; case PRIV_U: ppl=0; break; } // sets the pc to the value stored in the x epc register. this->reg.NEXT_PC=csr[uepc|inst_priv<<8]; status&=~(1<>(inst_priv+4))&0x1; //previous interrupt enable status|= pie<reg.machine_state=ppl; el::Loggers::getLogger("disass", true)->info("Executing xRET , changing privilege level from %v to %v", lvl[cur_priv], lvl[ppl]); return this->reg.NEXT_PC; } template void riscv_core::wait_until(uint64_t flags) { auto status=csr[mstatus]; auto tw = status & (1<<21); if(this->reg.machine_state==PRIV_S && tw!=0){ this->reg.trap_state=(1<<31)|(2<<16); this->fault_data=this->reg.PC; } } } } #endif /* _RISCV_CORE_H_ */