//////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, MINRES Technologies GmbH // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Contributors: // eyck@minres.com - initial API and implementation // // //////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "iss/arch/CORE_DEF_NAME.h" #include "iss/debugger/server.h" #include "iss/vm_base.h" #include "iss/arch/riscv_hart_msu_vp.h" #include namespace iss { namespace CORE_DEF_NAME { using namespace iss::arch; using namespace llvm; using namespace iss::debugger; template struct vm_impl; template struct target_adapter : public target_adapter_base { target_adapter(server_if *srv, vm_impl *vm) : target_adapter_base(srv), vm(vm) {} /*============== Thread Control ===============================*/ /* Set generic thread */ status set_gen_thread(rp_thread_ref &thread) override; /* Set control thread */ status set_ctrl_thread(rp_thread_ref &thread) override; /* Get thread status */ status is_thread_alive(rp_thread_ref &thread, bool &alive) override; /*============= Register Access ================================*/ /* Read all registers. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_registers(std::vector &data, std::vector &avail) override; /* Write all registers. buf is 4-byte aligned and it is in target byte order */ status write_registers(const std::vector &data) override; /* Read one register. buf is 4-byte aligned and it is in target byte order. If register is not available corresponding bytes in avail_buf are 0, otherwise avail buf is 1 */ status read_single_register(unsigned int reg_no, std::vector &buf, std::vector &avail_buf) override; /* Write one register. buf is 4-byte aligned and it is in target byte order */ status write_single_register(unsigned int reg_no, const std::vector &buf) override; /*=================== Memory Access =====================*/ /* Read memory, buf is 4-bytes aligned and it is in target byte order */ status read_mem(uint64_t addr, std::vector &buf) override; /* Write memory, buf is 4-bytes aligned and it is in target byte order */ status write_mem(uint64_t addr, const std::vector &buf) override; status process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) override; status thread_list_query(int first, const rp_thread_ref &arg, std::vector &result, size_t max_num, size_t &num, bool &done) override; status current_thread_query(rp_thread_ref &thread) override; status offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) override; status crc_query(uint64_t addr, size_t len, uint32_t &val) override; status raw_query(std::string in_buf, std::string &out_buf) override; status threadinfo_query(int first, std::string &out_buf) override; status threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) override; status packetsize_query(std::string &out_buf) override; status add_break(int type, uint64_t addr, unsigned int length) override; status remove_break(int type, uint64_t addr, unsigned int length) override; status resume_from_addr(bool step, int sig, uint64_t addr) override; protected: static inline constexpr addr_t map_addr(const addr_t &i) { return i; } vm_impl *vm; rp_thread_ref thread_idx; }; template struct vm_impl : public vm::vm_base { using super = typename vm::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, bool dump = false); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) { debugger_if::dbg_enabled = true; if (vm::vm_base::tgt_adapter == nullptr) vm::vm_base::tgt_adapter = new target_adapter(srv, this); return vm::vm_base::tgt_adapter; } protected: template inline llvm::ConstantInt *size(T type) { return llvm::ConstantInt::get(getContext(), llvm::APInt(32, type->getType()->getScalarSizeInBits())); } inline llvm::Value *gen_choose(llvm::Value *cond, llvm::Value *trueVal, llvm::Value *falseVal, unsigned size) const { return this->gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size)); } std::tuple gen_single_inst_behavior(virt_addr_t &, unsigned int &, llvm::BasicBlock *) override; void gen_leave_behavior(llvm::BasicBlock *leave_blk) override; void gen_raise_trap(uint16_t trap_id, uint16_t cause); void gen_leave_trap(unsigned lvl); void gen_wait(unsigned type); void gen_trap_behavior(llvm::BasicBlock *) override; void gen_trap_check(llvm::BasicBlock *bb); inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) { llvm::Value *next_pc_v = this->builder->CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val), this->get_type(traits::XLEN)); this->builder->CreateStore(next_pc_v, get_reg_ptr(reg_num), true); } inline llvm::Value *get_reg_ptr(unsigned i) { void *ptr = this->core.get_regs_base_ptr() + traits::reg_byte_offset(i); llvm::PointerType *ptrType = nullptr; switch (traits::reg_bit_width(i) >> 3) { case 8: ptrType = llvm::Type::getInt64PtrTy(this->mod->getContext()); break; case 4: ptrType = llvm::Type::getInt32PtrTy(this->mod->getContext()); break; case 2: ptrType = llvm::Type::getInt16PtrTy(this->mod->getContext()); break; case 1: ptrType = llvm::Type::getInt8PtrTy(this->mod->getContext()); break; default: throw std::runtime_error("unsupported access with"); break; } return llvm::ConstantExpr::getIntToPtr( llvm::ConstantInt::get(this->mod->getContext(), llvm::APInt(8 /*bits*/ * sizeof(uint8_t *), reinterpret_cast(ptr))), ptrType); } inline llvm::Value *gen_reg_load(unsigned i, unsigned level = 0) { // if(level){ return this->builder->CreateLoad(get_reg_ptr(i), false); // } else { // if(!this->loaded_regs[i]) // this->loaded_regs[i]=this->builder->CreateLoad(get_reg_ptr(i), // false); // return this->loaded_regs[i]; // } } inline void gen_set_pc(virt_addr_t pc) { llvm::Value *pc_l = this->builder->CreateSExt(this->gen_const(traits::caddr_bit_width, (unsigned)pc), this->get_type(traits::caddr_bit_width)); super::gen_set_reg(traits::PC, pc_l); } // some compile time constants enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 }; enum { LUT_SIZE = 1 << bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << bit_count(EXTR_MASK16) }; using this_class = vm_impl; using compile_func = std::tuple (this_class::*)(virt_addr_t &pc, code_word_t instr, llvm::BasicBlock *bb); compile_func lut[LUT_SIZE]; std::array lut_00, lut_01, lut_10; std::array lut_11; compile_func *qlut[4]; // = {lut_00, lut_01, lut_10, lut_11}; const uint32_t lutmasks[4] = {EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}; void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f) { if (pos < 0) { lut[idx] = f; } else { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f); } else { if ((valid & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f); expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f); } else { auto new_val = idx << 1; if ((value & bitmask) != 0) new_val++; expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f); } } } } inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); } uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) { if (pos >= 0) { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { lut_val = extract_fields(pos - 1, val, mask, lut_val); } else { auto new_val = lut_val << 1; if ((val & bitmask) != 0) new_val++; lut_val = extract_fields(pos - 1, val, mask, new_val); } } return lut_val; } private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct InstructionDesriptor { size_t length; uint32_t value; uint32_t mask; compile_func op; }; /* «start generated code» */ InstructionDesriptor instr_descr[0] = {}; /* «end generated code» */ /**************************************************************************** * end opcode definitions ****************************************************************************/ std::tuple illegal_intruction(virt_addr_t &pc, code_word_t instr, llvm::BasicBlock *bb) { // this->gen_sync(iss::PRE_SYNC); this->builder->CreateStore(this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), true), get_reg_ptr(traits::PC), true); this->builder->CreateStore( this->builder->CreateAdd(this->builder->CreateLoad(get_reg_ptr(traits::ICOUNT), true), this->gen_const(64U, 1)), get_reg_ptr(traits::ICOUNT), true); if (this->debugging_enabled()) this->gen_sync(iss::PRE_SYNC); pc = pc + ((instr & 3) == 3 ? 4 : 2); this->gen_raise_trap(0, 2); // illegal instruction trap this->gen_sync(iss::POST_SYNC); /* call post-sync if needed */ this->gen_trap_check(this->leave_blk); return std::make_tuple(iss::vm::BRANCH, nullptr); } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, bool dump) : vm::vm_base(core, dump) { qlut[0] = lut_00.data(); qlut[1] = lut_01.data(); qlut[2] = lut_10.data(); qlut[3] = lut_11.data(); for (auto instr : instr_descr) { auto quantrant = instr.value & 0x3; expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op); } this->sync_exec = static_cast(this->sync_exec | core.needed_sync()); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, llvm::BasicBlock *this_block) { // we fetch at max 4 byte, alignment is 2 code_word_t insn = 0; iss::addr_t paddr; const typename traits::addr_t upper_bits = ~traits::PGMASK; try { uint8_t *const data = (uint8_t *)&insn; paddr = this->core.v2p(pc); if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary auto res = this->core.read(paddr, 2, data); if (res != iss::Ok) throw trap_access(1, pc.val); if ((insn & 0x3) == 0x3) { // this is a 32bit instruction res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); } } else { auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(1, pc.val); } } catch (trap_access &ta) { throw trap_access(ta.id, pc.val); } if (insn == 0x0000006f) throw simulation_stopped(0); // curr pc on stack typename vm_impl::processing_pc_entry addr(*this, pc, paddr); ++inst_cnt; auto lut_val = extract_fields(insn); auto f = qlut[insn & 0x3][lut_val]; if (f == nullptr) { f = &this_class::illegal_intruction; } return (this->*f)(pc, insn, this_block); } template void vm_impl::gen_leave_behavior(llvm::BasicBlock *leave_blk) { this->builder->SetInsertPoint(leave_blk); this->builder->CreateRet(this->builder->CreateLoad(get_reg_ptr(arch::traits::NEXT_PC), false)); } template void vm_impl::gen_raise_trap(uint16_t trap_id, uint16_t cause) { auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id); this->builder->CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true); } template void vm_impl::gen_leave_trap(unsigned lvl) { std::vector args{ this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, lvl)), }; this->builder->CreateCall(this->mod->getFunction("leave_trap"), args); auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8); this->builder->CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); } template void vm_impl::gen_wait(unsigned type) { std::vector args{ this->core_ptr, llvm::ConstantInt::get(getContext(), llvm::APInt(64, type)), }; this->builder->CreateCall(this->mod->getFunction("wait"), args); } template void vm_impl::gen_trap_behavior(llvm::BasicBlock *trap_blk) { this->builder->SetInsertPoint(trap_blk); auto *trap_state_val = this->builder->CreateLoad(get_reg_ptr(traits::TRAP_STATE), true); std::vector args{this->core_ptr, this->adj_to64(trap_state_val), this->adj_to64(this->builder->CreateLoad(get_reg_ptr(traits::PC), false))}; this->builder->CreateCall(this->mod->getFunction("enter_trap"), args); auto *trap_addr_val = this->builder->CreateLoad(get_reg_ptr(traits::NEXT_PC), false); this->builder->CreateRet(trap_addr_val); } template inline void vm_impl::gen_trap_check(llvm::BasicBlock *bb) { auto *v = this->builder->CreateLoad(get_reg_ptr(arch::traits::TRAP_STATE), true); this->gen_cond_branch(this->builder->CreateICmp( ICmpInst::ICMP_EQ, v, llvm::ConstantInt::get(getContext(), llvm::APInt(v->getType()->getIntegerBitWidth(), 0))), bb, this->trap_blk, 1); } } // namespace CORE_DEF_NAME #define CREATE_FUNCS(ARCH) \ template <> std::unique_ptr create(ARCH * core, unsigned short port, bool dump) { \ std::unique_ptr> ret = \ std::make_unique>(*core, dump); \ debugger::server::run_server(ret.get(), port); \ return ret; \ } \ template <> std::unique_ptr create(std::string inst_name, unsigned short port, bool dump) { \ return create(new arch::riscv_hart_msu_vp(), port, dump); /* FIXME: memory leak!!!!!!! */ \ } \ template <> std::unique_ptr create(ARCH * core, bool dump) { \ return std::make_unique>(*core, dump); /* FIXME: memory leak!!!!!!! */ \ } \ template <> std::unique_ptr create(std::string inst_name, bool dump) { \ return create(new arch::riscv_hart_msu_vp(), dump); \ } CREATE_FUNCS(arch::CORE_DEF_NAME) namespace CORE_DEF_NAME { template status target_adapter::set_gen_thread(rp_thread_ref &thread) { thread_idx = thread; return Ok; } template status target_adapter::set_ctrl_thread(rp_thread_ref &thread) { thread_idx = thread; return Ok; } template status target_adapter::is_thread_alive(rp_thread_ref &thread, bool &alive) { alive = 1; return Ok; } /* List threads. If first is non-zero then start from the first thread, * otherwise start from arg, result points to array of threads to be * filled out, result size is number of elements in the result, * num points to the actual number of threads found, done is * set if all threads are processed. */ template status target_adapter::thread_list_query(int first, const rp_thread_ref &arg, std::vector &result, size_t max_num, size_t &num, bool &done) { if (first == 0) { result.clear(); result.push_back(thread_idx); num = 1; done = true; return Ok; } else return NotSupported; } template status target_adapter::current_thread_query(rp_thread_ref &thread) { thread = thread_idx; return Ok; } template status target_adapter::read_registers(std::vector &data, std::vector &avail) { LOG(TRACE) << "reading target registers"; // return idx<0?:; data.clear(); avail.clear(); std::vector reg_data; for (size_t reg_no = 0; reg_no < arch::traits::NUM_REGS; ++reg_no) { auto reg_bit_width = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no)); auto reg_width = reg_bit_width / 8; reg_data.resize(reg_width); vm->get_arch()->get_reg(reg_no, reg_data); for (size_t j = 0; j < reg_data.size(); ++j) { data.push_back(reg_data[j]); avail.push_back(0xff); } } // work around fill with F type registers if (arch::traits::NUM_REGS < 65) { auto reg_width = sizeof(typename arch::traits::reg_t); for (size_t reg_no = 0; reg_no < 33; ++reg_no) { for (size_t j = 0; j < reg_width; ++j) { data.push_back(0x0); avail.push_back(0x00); } } } return Ok; } template status target_adapter::write_registers(const std::vector &data) { size_t data_index = 0; auto reg_count = arch::traits::NUM_REGS; std::vector reg_data; for (size_t reg_no = 0; reg_no < reg_count; ++reg_no) { auto reg_bit_width = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no)); auto reg_width = reg_bit_width / 8; vm->get_arch()->set_reg(reg_no, std::vector(data.begin() + data_index, data.begin() + data_index + reg_width)); data_index += reg_width; } return Ok; } template status target_adapter::read_single_register(unsigned int reg_no, std::vector &data, std::vector &avail) { if (reg_no < 65) { // auto reg_size = arch::traits::reg_bit_width(static_cast::reg_e>(reg_no))/8; data.resize(0); vm->get_arch()->get_reg(reg_no, data); avail.resize(data.size()); std::fill(avail.begin(), avail.end(), 0xff); } else { typed_addr_t a(iss::DEBUG_READ, traits::CSR, reg_no - 65); data.resize(sizeof(typename traits::reg_t)); avail.resize(sizeof(typename traits::reg_t)); std::fill(avail.begin(), avail.end(), 0xff); vm->get_arch()->read(a, data.size(), data.data()); } return data.size() > 0 ? Ok : Err; } template status target_adapter::write_single_register(unsigned int reg_no, const std::vector &data) { if (reg_no < 65) vm->get_arch()->set_reg(reg_no, data); else { typed_addr_t a(iss::DEBUG_WRITE, traits::CSR, reg_no - 65); vm->get_arch()->write(a, data.size(), data.data()); } return Ok; } template status target_adapter::read_mem(uint64_t addr, std::vector &data) { auto a = map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr}); auto f = [&]() -> status { return vm->get_arch()->read(a, data.size(), data.data()); }; return srv->execute_syncronized(f); } template status target_adapter::write_mem(uint64_t addr, const std::vector &data) { auto a = map_addr({iss::DEBUG_READ, iss::VIRTUAL, 0, addr}); return srv->execute_syncronized(&arch_if::write, vm->get_arch(), a, data.size(), data.data()); } template status target_adapter::process_query(unsigned int &mask, const rp_thread_ref &arg, rp_thread_info &info) { return NotSupported; } template status target_adapter::offsets_query(uint64_t &text, uint64_t &data, uint64_t &bss) { text = 0; data = 0; bss = 0; return Ok; } template status target_adapter::crc_query(uint64_t addr, size_t len, uint32_t &val) { return NotSupported; } template status target_adapter::raw_query(std::string in_buf, std::string &out_buf) { return NotSupported; } template status target_adapter::threadinfo_query(int first, std::string &out_buf) { if (first) { std::stringstream ss; ss << "m" << std::hex << thread_idx.val; out_buf = ss.str(); } else { out_buf = "l"; } return Ok; } template status target_adapter::threadextrainfo_query(const rp_thread_ref &thread, std::string &out_buf) { char buf[20]; memset(buf, 0, 20); sprintf(buf, "%02x%02x%02x%02x%02x%02x%02x%02x%02x", 'R', 'u', 'n', 'n', 'a', 'b', 'l', 'e', 0); out_buf = buf; return Ok; } template status target_adapter::packetsize_query(std::string &out_buf) { out_buf = "PacketSize=1000"; return Ok; } template status target_adapter::add_break(int type, uint64_t addr, unsigned int length) { auto saddr = map_addr({iss::CODE, iss::PHYSICAL, addr}); auto eaddr = map_addr({iss::CODE, iss::PHYSICAL, addr + length}); target_adapter_base::bp_lut.addEntry(++target_adapter_base::bp_count, saddr.val, eaddr.val - saddr.val); LOG(TRACE) << "Adding breakpoint with handle " << target_adapter_base::bp_count << " for addr 0x" << std::hex << saddr.val << std::dec; LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Ok; } template status target_adapter::remove_break(int type, uint64_t addr, unsigned int length) { auto saddr = map_addr({iss::CODE, iss::PHYSICAL, addr}); unsigned handle = target_adapter_base::bp_lut.getEntry(saddr.val); // TODO: check length of addr range if (handle) { LOG(TRACE) << "Removing breakpoint with handle " << handle << " for addr 0x" << std::hex << saddr.val << std::dec; target_adapter_base::bp_lut.removeEntry(handle); LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Ok; } LOG(TRACE) << "Now having " << target_adapter_base::bp_lut.size() << " breakpoints"; return Err; } template status target_adapter::resume_from_addr(bool step, int sig, uint64_t addr) { unsigned reg_no = arch::traits::PC; std::vector data(8); *(reinterpret_cast(&data[0])) = addr; vm->get_arch()->set_reg(reg_no, data); return resume_from_current(step, sig); } } // namespace CORE_DEF_NAME } // namespace iss