/******************************************************************************* * Copyright (C) 2020 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ // clang-format off #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace tcc { namespace ${coreDef.name.toLowerCase()} { using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::tcc::vm_base { public: using traits = arch::traits; using super = typename iss::tcc::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using mem_type_e = typename traits::mem_type_e; using addr_t = typename super::addr_t; using tu_builder = typename super::tu_builder; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using vm_base::get_reg_ptr; using this_class = vm_impl; using compile_ret_t = std::tuple; using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr, tu_builder&); inline const char *name(size_t index){return traits::reg_aliases.at(index);} void setup_module(std::string m) override { super::setup_module(m); } compile_ret_t gen_single_inst_behavior(virt_addr_t &, unsigned int &, tu_builder&) override; void gen_trap_behavior(tu_builder& tu) override; void gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause); void gen_leave_trap(tu_builder& tu, unsigned lvl); void gen_wait(tu_builder& tu, unsigned type); inline void gen_trap_check(tu_builder& tu) { tu("if(*trap_state!=0) goto trap_entry;"); } inline void gen_set_pc(tu_builder& tu, virt_addr_t pc, unsigned reg_num) { switch(reg_num){ case traits::NEXT_PC: tu("*next_pc = {:#x};", pc.val); break; case traits::PC: tu("*pc = {:#x};", pc.val); break; default: if(!tu.defined_regs[reg_num]){ tu("reg_t* reg{:02d} = (reg_t*){:#x};", reg_num, reinterpret_cast(get_reg_ptr(reg_num))); tu.defined_regs[reg_num]=true; } tu("*reg{:02d} = {:#x};", reg_num, pc.val); } } template::type> inline S sext(U from) { auto mask = (1ULL< instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value){} }; decoding_tree_node* root {nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> /* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */ {${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%> }}; /* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %> /* instruction ${idx}: ${instr.name} */ compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, tu_builder& tu){ tu("${instr.name}_{:#010x}:", pc.val); vm_base::gen_sync(tu, PRE_SYNC,${idx}); uint64_t PC = pc.val; <%instr.fields.eachLine{%>${it} <%}%>if(this->disass_enabled){ /* generate console output when executing the command */<%instr.disass.eachLine{%> ${it}<%}%> } auto cur_pc_val = tu.constant(pc.val, traits::reg_bit_widths[traits::PC]); pc=pc+ ${instr.length/8}; gen_set_pc(tu, pc, traits::NEXT_PC); tu.open_scope(); <%instr.behavior.eachLine{%>${it} <%}%> tu.close_scope(); gen_trap_check(tu); vm_base::gen_sync(tu, POST_SYNC,${idx}); return returnValue; } <%}%> /**************************************************************************** * end opcode definitions ****************************************************************************/ compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr, tu_builder& tu) { vm_impl::gen_sync(tu, iss::PRE_SYNC, instr_descr.size()); pc = pc + ((instr & 3) == 3 ? 4 : 2); gen_raise_trap(tu, 0, 2); // illegal instruction trap vm_impl::gen_sync(tu, iss::POST_SYNC, instr_descr.size()); vm_impl::gen_trap_check(tu); return BRANCH; } //decoding functionality void populate_decoding_tree(decoding_tree_node* root){ //create submask for(auto instr: root->instrs){ root->submask &= instr.mask; } //put each instr according to submask&encoding into children for(auto instr: root->instrs){ bool foundMatch = false; for(auto child: root->children){ //use value as identifying trait if(child->value == (instr.value&root->submask)){ child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch){ decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); //call populate_decoding_tree for all children if(root->children.size() >1) for(auto child: root->children){ populate_decoding_tree(child); } else{ //sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } compile_func decode_instr(decoding_tree_node* node, code_word_t word){ if(!node->children.size()){ if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs){ if((instr.mask&word) == instr.value) return instr.op; } } else{ for(auto child : node->children){ if (child->value == (node->submask&word)){ return decode_instr(child, word); } } } return nullptr; } }; template void debug_fn(CODE_WORD instr) { volatile CODE_WORD x = instr; instr = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr:instr_descr){ root->instrs.push_back(instr); } populate_decoding_tree(root); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, tu_builder& tu) { // we fetch at max 4 byte, alignment is 2 enum {TRAP_ID=1<<16}; code_word_t instr = 0; phys_addr_t paddr(pc); if(this->core.has_mmu()) paddr = this->core.virt2phys(pc); //TODO: re-add page handling // if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // auto res = this->core.read(paddr, 2, data); // if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // if ((insn & 0x3) == 0x3) { // this is a 32bit instruction // res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); // } // } else { auto res = this->core.read(paddr, 4, reinterpret_cast(&instr)); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // } if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' // curr pc on stack ++inst_cnt; auto f = decode_instr(root, instr); if (f == nullptr) { f = &this_class::illegal_intruction; } return (this->*f)(pc, instr, tu); } template void vm_impl::gen_raise_trap(tu_builder& tu, uint16_t trap_id, uint16_t cause) { tu(" *trap_state = {:#x};", 0x80 << 24 | (cause << 16) | trap_id); tu.store(traits::NEXT_PC, tu.constant(std::numeric_limits::max(), 32)); } template void vm_impl::gen_leave_trap(tu_builder& tu, unsigned lvl) { tu("leave_trap(core_ptr, {});", lvl); tu.store(traits::NEXT_PC, tu.read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN)); tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits::max(), 32)); } template void vm_impl::gen_wait(tu_builder& tu, unsigned type) { } template void vm_impl::gen_trap_behavior(tu_builder& tu) { tu("trap_entry:"); this->gen_sync(tu, POST_SYNC, -1); tu("enter_trap(core_ptr, *trap_state, *pc, 0);"); tu.store(traits::LAST_BRANCH, tu.constant(std::numeric_limits::max(),32)); tu("return *next_pc;"); } } // namespace ${coreDef.name.toLowerCase()} template <> std::unique_ptr create(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { auto ret = new ${coreDef.name.toLowerCase()}::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namesapce tcc } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|tcc", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|tcc", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new tcc::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }) }; } } // clang-format on