/******************************************************************************* * Copyright (C) 2017, 2018 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace llvm { namespace fp_impl { void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned); } namespace tgf_b { using namespace ::llvm; using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::llvm::vm_base { public: using super = typename iss::llvm::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using vm_base::get_reg_ptr; inline const char *name(size_t index){return traits::reg_aliases.at(index);} template inline ConstantInt *size(T type) { return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits())); } void setup_module(Module* m) override { super::setup_module(m); iss::llvm::fp_impl::add_fp_functions_2_module(m, traits::FP_REGS_SIZE, traits::XLEN); } inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) { return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size)); } std::tuple gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override; void gen_leave_behavior(BasicBlock *leave_blk) override; void gen_raise_trap(uint16_t trap_id, uint16_t cause); void gen_leave_trap(unsigned lvl); void gen_wait(unsigned type); void gen_trap_behavior(BasicBlock *) override; void gen_trap_check(BasicBlock *bb); inline Value *gen_reg_load(unsigned i, unsigned level = 0) { return this->builder.CreateLoad(get_reg_ptr(i), false); } inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) { Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val), this->get_type(traits::XLEN)); this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true); } // some compile time constants // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 }; enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 }; enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) }; using this_class = vm_impl; using compile_func = std::tuple (this_class::*)(virt_addr_t &pc, code_word_t instr, BasicBlock *bb); std::array lut; std::array lut_00, lut_01, lut_10; std::array lut_11; std::array qlut; std::array lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}}; void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f) { if (pos < 0) { lut[idx] = f; } else { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f); } else { if ((valid & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f); expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f); } else { auto new_val = idx << 1; if ((value & bitmask) != 0) new_val++; expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f); } } } } inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); } uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) { if (pos >= 0) { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { lut_val = extract_fields(pos - 1, val, mask, lut_val); } else { auto new_val = lut_val << 1; if ((val & bitmask) != 0) new_val++; lut_val = extract_fields(pos - 1, val, mask, new_val); } } return lut_val; } private: /**************************************************************************** * start opcode definitions ****************************************************************************/ struct InstructionDesriptor { size_t length; uint32_t value; uint32_t mask; compile_func op; }; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */ /* instruction LUI */ {32, 0b00000000000000000000000000110111, 0b00000000000000000000000001111111, &this_class::__lui}, /* instruction AUIPC */ {32, 0b00000000000000000000000000010111, 0b00000000000000000000000001111111, &this_class::__auipc}, /* instruction JAL */ {32, 0b00000000000000000000000001101111, 0b00000000000000000000000001111111, &this_class::__jal}, /* instruction JALR */ {32, 0b00000000000000000000000001100111, 0b00000000000000000111000001111111, &this_class::__jalr}, /* instruction BEQ */ {32, 0b00000000000000000000000001100011, 0b00000000000000000111000001111111, &this_class::__beq}, /* instruction BNE */ {32, 0b00000000000000000001000001100011, 0b00000000000000000111000001111111, &this_class::__bne}, /* instruction BLT */ {32, 0b00000000000000000100000001100011, 0b00000000000000000111000001111111, &this_class::__blt}, /* instruction BGE */ {32, 0b00000000000000000101000001100011, 0b00000000000000000111000001111111, &this_class::__bge}, /* instruction BLTU */ {32, 0b00000000000000000110000001100011, 0b00000000000000000111000001111111, &this_class::__bltu}, /* instruction BGEU */ {32, 0b00000000000000000111000001100011, 0b00000000000000000111000001111111, &this_class::__bgeu}, /* instruction LB */ {32, 0b00000000000000000000000000000011, 0b00000000000000000111000001111111, &this_class::__lb}, /* instruction LH */ {32, 0b00000000000000000001000000000011, 0b00000000000000000111000001111111, &this_class::__lh}, /* instruction LW */ {32, 0b00000000000000000010000000000011, 0b00000000000000000111000001111111, &this_class::__lw}, /* instruction LBU */ {32, 0b00000000000000000100000000000011, 0b00000000000000000111000001111111, &this_class::__lbu}, /* instruction LHU */ {32, 0b00000000000000000101000000000011, 0b00000000000000000111000001111111, &this_class::__lhu}, /* instruction SB */ {32, 0b00000000000000000000000000100011, 0b00000000000000000111000001111111, &this_class::__sb}, /* instruction SH */ {32, 0b00000000000000000001000000100011, 0b00000000000000000111000001111111, &this_class::__sh}, /* instruction SW */ {32, 0b00000000000000000010000000100011, 0b00000000000000000111000001111111, &this_class::__sw}, /* instruction ADDI */ {32, 0b00000000000000000000000000010011, 0b00000000000000000111000001111111, &this_class::__addi}, /* instruction SLTI */ {32, 0b00000000000000000010000000010011, 0b00000000000000000111000001111111, &this_class::__slti}, /* instruction SLTIU */ {32, 0b00000000000000000011000000010011, 0b00000000000000000111000001111111, &this_class::__sltiu}, /* instruction XORI */ {32, 0b00000000000000000100000000010011, 0b00000000000000000111000001111111, &this_class::__xori}, /* instruction ORI */ {32, 0b00000000000000000110000000010011, 0b00000000000000000111000001111111, &this_class::__ori}, /* instruction ANDI */ {32, 0b00000000000000000111000000010011, 0b00000000000000000111000001111111, &this_class::__andi}, /* instruction SLLI */ {32, 0b00000000000000000001000000010011, 0b11111110000000000111000001111111, &this_class::__slli}, /* instruction SRLI */ {32, 0b00000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srli}, /* instruction SRAI */ {32, 0b01000000000000000101000000010011, 0b11111110000000000111000001111111, &this_class::__srai}, /* instruction ADD */ {32, 0b00000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__add}, /* instruction SUB */ {32, 0b01000000000000000000000000110011, 0b11111110000000000111000001111111, &this_class::__sub}, /* instruction SLL */ {32, 0b00000000000000000001000000110011, 0b11111110000000000111000001111111, &this_class::__sll}, /* instruction SLT */ {32, 0b00000000000000000010000000110011, 0b11111110000000000111000001111111, &this_class::__slt}, /* instruction SLTU */ {32, 0b00000000000000000011000000110011, 0b11111110000000000111000001111111, &this_class::__sltu}, /* instruction XOR */ {32, 0b00000000000000000100000000110011, 0b11111110000000000111000001111111, &this_class::__xor}, /* instruction SRL */ {32, 0b00000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__srl}, /* instruction SRA */ {32, 0b01000000000000000101000000110011, 0b11111110000000000111000001111111, &this_class::__sra}, /* instruction OR */ {32, 0b00000000000000000110000000110011, 0b11111110000000000111000001111111, &this_class::__or}, /* instruction AND */ {32, 0b00000000000000000111000000110011, 0b11111110000000000111000001111111, &this_class::__and}, /* instruction FENCE */ {32, 0b00000000000000000000000000001111, 0b11110000000000000111000001111111, &this_class::__fence}, /* instruction FENCE_I */ {32, 0b00000000000000000001000000001111, 0b00000000000000000111000001111111, &this_class::__fence_i}, /* instruction ECALL */ {32, 0b00000000000000000000000001110011, 0b11111111111111111111111111111111, &this_class::__ecall}, /* instruction EBREAK */ {32, 0b00000000000100000000000001110011, 0b11111111111111111111111111111111, &this_class::__ebreak}, /* instruction URET */ {32, 0b00000000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__uret}, /* instruction SRET */ {32, 0b00010000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__sret}, /* instruction MRET */ {32, 0b00110000001000000000000001110011, 0b11111111111111111111111111111111, &this_class::__mret}, /* instruction WFI */ {32, 0b00010000010100000000000001110011, 0b11111111111111111111111111111111, &this_class::__wfi}, /* instruction SFENCE.VMA */ {32, 0b00010010000000000000000001110011, 0b11111110000000000111111111111111, &this_class::__sfence_vma}, /* instruction CSRRW */ {32, 0b00000000000000000001000001110011, 0b00000000000000000111000001111111, &this_class::__csrrw}, /* instruction CSRRS */ {32, 0b00000000000000000010000001110011, 0b00000000000000000111000001111111, &this_class::__csrrs}, /* instruction CSRRC */ {32, 0b00000000000000000011000001110011, 0b00000000000000000111000001111111, &this_class::__csrrc}, /* instruction CSRRWI */ {32, 0b00000000000000000101000001110011, 0b00000000000000000111000001111111, &this_class::__csrrwi}, /* instruction CSRRSI */ {32, 0b00000000000000000110000001110011, 0b00000000000000000111000001111111, &this_class::__csrrsi}, /* instruction CSRRCI */ {32, 0b00000000000000000111000001110011, 0b00000000000000000111000001111111, &this_class::__csrrci}, }}; /* instruction definitions */ /* instruction 0: LUI */ std::tuple __lui(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LUI"); this->gen_sync(PRE_SYNC, 0); uint8_t rd = ((bit_sub<7,5>(instr))); int32_t imm = signextend((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#05x}", fmt::arg("mnemonic", "lui"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->gen_const(32U, imm); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 0); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 1: AUIPC */ std::tuple __auipc(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("AUIPC"); this->gen_sync(PRE_SYNC, 1); uint8_t rd = ((bit_sub<7,5>(instr))); int32_t imm = signextend((bit_sub<12,20>(instr) << 12)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#08x}", fmt::arg("mnemonic", "auipc"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 1); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 2: JAL */ std::tuple __jal(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("JAL"); this->gen_sync(PRE_SYNC, 2); uint8_t rd = ((bit_sub<7,5>(instr))); int32_t imm = signextend((bit_sub<12,8>(instr) << 12) | (bit_sub<20,1>(instr) << 11) | (bit_sub<21,10>(instr) << 1) | (bit_sub<31,1>(instr) << 20)); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm:#0x}", fmt::arg("mnemonic", "jal"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } Value* PC_val = this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 2); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 3: JALR */ std::tuple __jalr(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("JALR"); this->gen_sync(PRE_SYNC, 3); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm:#0x}", fmt::arg("mnemonic", "jalr"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* new_pc_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); Value* align_val = this->builder.CreateAnd( new_pc_val, this->gen_const(32U, 0x2)); { BasicBlock* bbnext = BasicBlock::Create(this->mod->getContext(), "endif", this->func, this->leave_blk); BasicBlock* bb_then = BasicBlock::Create(this->mod->getContext(), "thenbr", this->func, bbnext); BasicBlock* bb_else = BasicBlock::Create(this->mod->getContext(), "elsebr", this->func, bbnext); // this->builder.SetInsertPoint(bb); this->gen_cond_branch(this->builder.CreateICmp( ICmpInst::ICMP_NE, align_val, this->gen_const(32U, 0)), bb_then, bb_else); this->builder.SetInsertPoint(bb_then); { this->gen_raise_trap(0, 0); } this->builder.CreateBr(bbnext); this->builder.SetInsertPoint(bb_else); { if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } Value* PC_val = this->builder.CreateAnd( new_pc_val, this->builder.CreateNot(this->gen_const(32U, 0x1))); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); } this->builder.CreateBr(bbnext); bb=bbnext; } this->builder.SetInsertPoint(bb); this->gen_sync(POST_SYNC, 3); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 4: BEQ */ std::tuple __beq(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BEQ"); this->gen_sync(PRE_SYNC, 4); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "beq"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_EQ, this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 4); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 5: BNE */ std::tuple __bne(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BNE"); this->gen_sync(PRE_SYNC, 5); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bne"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_NE, this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 5); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 6: BLT */ std::tuple __blt(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BLT"); this->gen_sync(PRE_SYNC, 6); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "blt"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_SLT, this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_ext( this->gen_reg_load(rs2 + traits::X0, 0), 32, true)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 6); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 7: BGE */ std::tuple __bge(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BGE"); this->gen_sync(PRE_SYNC, 7); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bge"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_SGE, this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_ext( this->gen_reg_load(rs2 + traits::X0, 0), 32, true)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 7); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 8: BLTU */ std::tuple __bltu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BLTU"); this->gen_sync(PRE_SYNC, 8); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bltu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_ULT, this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 8); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 9: BGEU */ std::tuple __bgeu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("BGEU"); this->gen_sync(PRE_SYNC, 9); int16_t imm = signextend((bit_sub<7,1>(instr) << 11) | (bit_sub<8,4>(instr) << 1) | (bit_sub<25,6>(instr) << 5) | (bit_sub<31,1>(instr) << 12)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs1}, {rs2}, {imm:#0x}", fmt::arg("mnemonic", "bgeu"), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* PC_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_UGE, this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)), this->builder.CreateAdd( this->gen_ext( cur_pc_val, 32, true), this->gen_const(32U, imm)), this->builder.CreateAdd( cur_pc_val, this->gen_const(32U, 4)), 32); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); Value* is_cont_v = this->builder.CreateICmp(ICmpInst::ICMP_NE, PC_val, this->gen_const(32U, pc.val), "is_cont_v"); this->builder.CreateStore(this->gen_ext(is_cont_v, 32U, false), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_sync(POST_SYNC, 9); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 10: LB */ std::tuple __lb(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LB"); this->gen_sync(PRE_SYNC, 10); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lb"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); if(rd != 0){ Value* Xtmp0_val = this->gen_ext( this->gen_read_mem(traits::MEM, offs_val, 8/8), 32, true); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 10); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 11: LH */ std::tuple __lh(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LH"); this->gen_sync(PRE_SYNC, 11); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lh"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); if(rd != 0){ Value* Xtmp0_val = this->gen_ext( this->gen_read_mem(traits::MEM, offs_val, 16/8), 32, true); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 11); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 12: LW */ std::tuple __lw(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LW"); this->gen_sync(PRE_SYNC, 12); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lw"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); if(rd != 0){ Value* Xtmp0_val = this->gen_ext( this->gen_read_mem(traits::MEM, offs_val, 32/8), 32, true); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 12); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 13: LBU */ std::tuple __lbu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LBU"); this->gen_sync(PRE_SYNC, 13); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lbu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); if(rd != 0){ Value* Xtmp0_val = this->gen_ext( this->gen_read_mem(traits::MEM, offs_val, 8/8), 32, false); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 13); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 14: LHU */ std::tuple __lhu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("LHU"); this->gen_sync(PRE_SYNC, 14); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {imm}({rs1})", fmt::arg("mnemonic", "lhu"), fmt::arg("rd", name(rd)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); if(rd != 0){ Value* Xtmp0_val = this->gen_ext( this->gen_read_mem(traits::MEM, offs_val, 16/8), 32, false); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 14); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 15: SB */ std::tuple __sb(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SB"); this->gen_sync(PRE_SYNC, 15); int16_t imm = signextend((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sb"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); Value* MEMtmp0_val = this->gen_reg_load(rs2 + traits::X0, 0); this->gen_write_mem( traits::MEM, offs_val, this->builder.CreateZExtOrTrunc(MEMtmp0_val,this->get_type(8))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 15); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 16: SH */ std::tuple __sh(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SH"); this->gen_sync(PRE_SYNC, 16); int16_t imm = signextend((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sh"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); Value* MEMtmp0_val = this->gen_reg_load(rs2 + traits::X0, 0); this->gen_write_mem( traits::MEM, offs_val, this->builder.CreateZExtOrTrunc(MEMtmp0_val,this->get_type(16))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 16); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 17: SW */ std::tuple __sw(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SW"); this->gen_sync(PRE_SYNC, 17); int16_t imm = signextend((bit_sub<7,5>(instr)) | (bit_sub<25,7>(instr) << 5)); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rs2}, {imm}({rs1})", fmt::arg("mnemonic", "sw"), fmt::arg("rs2", name(rs2)), fmt::arg("imm", imm), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* offs_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); Value* MEMtmp0_val = this->gen_reg_load(rs2 + traits::X0, 0); this->gen_write_mem( traits::MEM, offs_val, this->builder.CreateZExtOrTrunc(MEMtmp0_val,this->get_type(32))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 17); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 18: ADDI */ std::tuple __addi(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("ADDI"); this->gen_sync(PRE_SYNC, 18); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "addi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAdd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 18); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 19: SLTI */ std::tuple __slti(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLTI"); this->gen_sync(PRE_SYNC, 19); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "slti"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_SLT, this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)), this->gen_const(32U, 1), this->gen_const(32U, 0), 32); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 19); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 20: SLTIU */ std::tuple __sltiu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLTIU"); this->gen_sync(PRE_SYNC, 20); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "sltiu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; int32_t full_imm_val = imm; if(rd != 0){ Value* Xtmp0_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_ULT, this->gen_reg_load(rs1 + traits::X0, 0), this->gen_const(32U, full_imm_val)), this->gen_const(32U, 1), this->gen_const(32U, 0), 32); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 20); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 21: XORI */ std::tuple __xori(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("XORI"); this->gen_sync(PRE_SYNC, 21); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "xori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateXor( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 21); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 22: ORI */ std::tuple __ori(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("ORI"); this->gen_sync(PRE_SYNC, 22); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "ori"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateOr( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 22); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 23: ANDI */ std::tuple __andi(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("ANDI"); this->gen_sync(PRE_SYNC, 23); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); int16_t imm = signextend((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {imm}", fmt::arg("mnemonic", "andi"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("imm", imm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAnd( this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_const(32U, imm)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 23); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 24: SLLI */ std::tuple __slli(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLLI"); this->gen_sync(PRE_SYNC, 24); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "slli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(shamt > 31){ this->gen_raise_trap(0, 0); } else { if(rd != 0){ Value* Xtmp0_val = this->builder.CreateShl( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_const(32U, shamt)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 24); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 25: SRLI */ std::tuple __srli(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SRLI"); this->gen_sync(PRE_SYNC, 25); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srli"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(shamt > 31){ this->gen_raise_trap(0, 0); } else { if(rd != 0){ Value* Xtmp0_val = this->builder.CreateLShr( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_const(32U, shamt)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 25); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 26: SRAI */ std::tuple __srai(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SRAI"); this->gen_sync(PRE_SYNC, 26); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t shamt = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {shamt}", fmt::arg("mnemonic", "srai"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("shamt", shamt)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(shamt > 31){ this->gen_raise_trap(0, 0); } else { if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAShr( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_const(32U, shamt)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 26); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 27: ADD */ std::tuple __add(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("ADD"); this->gen_sync(PRE_SYNC, 27); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "add"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAdd( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 27); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 28: SUB */ std::tuple __sub(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SUB"); this->gen_sync(PRE_SYNC, 28); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sub"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateSub( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 28); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 29: SLL */ std::tuple __sll(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLL"); this->gen_sync(PRE_SYNC, 29); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sll"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateShl( this->gen_reg_load(rs1 + traits::X0, 0), this->builder.CreateAnd( this->gen_reg_load(rs2 + traits::X0, 0), this->builder.CreateSub( this->gen_const(32U, 32), this->gen_const(32U, 1)))); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 29); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 30: SLT */ std::tuple __slt(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLT"); this->gen_sync(PRE_SYNC, 30); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "slt"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_SLT, this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, true), this->gen_ext( this->gen_reg_load(rs2 + traits::X0, 0), 32, true)), this->gen_const(32U, 1), this->gen_const(32U, 0), 32); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 30); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 31: SLTU */ std::tuple __sltu(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SLTU"); this->gen_sync(PRE_SYNC, 31); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sltu"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->gen_choose( this->builder.CreateICmp( ICmpInst::ICMP_ULT, this->gen_ext( this->gen_reg_load(rs1 + traits::X0, 0), 32, false), this->gen_ext( this->gen_reg_load(rs2 + traits::X0, 0), 32, false)), this->gen_const(32U, 1), this->gen_const(32U, 0), 32); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 31); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 32: XOR */ std::tuple __xor(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("XOR"); this->gen_sync(PRE_SYNC, 32); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "xor"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateXor( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 32); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 33: SRL */ std::tuple __srl(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SRL"); this->gen_sync(PRE_SYNC, 33); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "srl"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateLShr( this->gen_reg_load(rs1 + traits::X0, 0), this->builder.CreateAnd( this->gen_reg_load(rs2 + traits::X0, 0), this->builder.CreateSub( this->gen_const(32U, 32), this->gen_const(32U, 1)))); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 33); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 34: SRA */ std::tuple __sra(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SRA"); this->gen_sync(PRE_SYNC, 34); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "sra"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAShr( this->gen_reg_load(rs1 + traits::X0, 0), this->builder.CreateAnd( this->gen_reg_load(rs2 + traits::X0, 0), this->builder.CreateSub( this->gen_const(32U, 32), this->gen_const(32U, 1)))); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 34); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 35: OR */ std::tuple __or(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("OR"); this->gen_sync(PRE_SYNC, 35); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "or"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateOr( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 35); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 36: AND */ std::tuple __and(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("AND"); this->gen_sync(PRE_SYNC, 36); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {rs1}, {rs2}", fmt::arg("mnemonic", "and"), fmt::arg("rd", name(rd)), fmt::arg("rs1", name(rs1)), fmt::arg("rs2", name(rs2))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->builder.CreateAnd( this->gen_reg_load(rs1 + traits::X0, 0), this->gen_reg_load(rs2 + traits::X0, 0)); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 36); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 37: FENCE */ std::tuple __fence(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("FENCE"); this->gen_sync(PRE_SYNC, 37); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t succ = ((bit_sub<20,4>(instr))); uint8_t pred = ((bit_sub<24,4>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("fence"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* FENCEtmp0_val = this->builder.CreateOr( this->builder.CreateShl( this->gen_const(32U, pred), this->gen_const(32U, 4)), this->gen_const(32U, succ)); this->gen_write_mem( traits::FENCE, this->gen_const(64U, 0), this->builder.CreateZExtOrTrunc(FENCEtmp0_val,this->get_type(32))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 37); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 38: FENCE_I */ std::tuple __fence_i(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("FENCE_I"); this->gen_sync(PRE_SYNC, 38); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t imm = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("fence_i"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* FENCEtmp0_val = this->gen_const(32U, imm); this->gen_write_mem( traits::FENCE, this->gen_const(64U, 1), this->builder.CreateZExtOrTrunc(FENCEtmp0_val,this->get_type(32))); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 38); this->gen_trap_check(this->leave_blk); return std::make_tuple(FLUSH, nullptr); } /* instruction 39: ECALL */ std::tuple __ecall(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("ECALL"); this->gen_sync(PRE_SYNC, 39); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("ecall"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_raise_trap(0, 11); this->gen_sync(POST_SYNC, 39); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 40: EBREAK */ std::tuple __ebreak(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("EBREAK"); this->gen_sync(PRE_SYNC, 40); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("ebreak"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_raise_trap(0, 3); this->gen_sync(POST_SYNC, 40); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 41: URET */ std::tuple __uret(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("URET"); this->gen_sync(PRE_SYNC, 41); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("uret"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_leave_trap(0); this->gen_sync(POST_SYNC, 41); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 42: SRET */ std::tuple __sret(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SRET"); this->gen_sync(PRE_SYNC, 42); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("sret"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_leave_trap(1); this->gen_sync(POST_SYNC, 42); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 43: MRET */ std::tuple __mret(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("MRET"); this->gen_sync(PRE_SYNC, 43); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("mret"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_leave_trap(3); this->gen_sync(POST_SYNC, 43); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } /* instruction 44: WFI */ std::tuple __wfi(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("WFI"); this->gen_sync(PRE_SYNC, 44); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("wfi"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; this->gen_wait(1); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 44); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 45: SFENCE.VMA */ std::tuple __sfence_vma(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("SFENCE.VMA"); this->gen_sync(PRE_SYNC, 45); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint8_t rs2 = ((bit_sub<20,5>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr("sfence.vma"), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* FENCEtmp0_val = this->gen_const(32U, rs1); this->gen_write_mem( traits::FENCE, this->gen_const(64U, 2), this->builder.CreateZExtOrTrunc(FENCEtmp0_val,this->get_type(32))); Value* FENCEtmp1_val = this->gen_const(32U, rs2); this->gen_write_mem( traits::FENCE, this->gen_const(64U, 3), this->builder.CreateZExtOrTrunc(FENCEtmp1_val,this->get_type(32))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 45); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 46: CSRRW */ std::tuple __csrrw(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRW"); this->gen_sync(PRE_SYNC, 46); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrw"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* rs_val_val = this->gen_reg_load(rs1 + traits::X0, 0); if(rd != 0){ Value* csr_val_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); Value* CSRtmp0_val = rs_val_val; this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp0_val,this->get_type(32))); Value* Xtmp1_val = csr_val_val; this->builder.CreateStore(Xtmp1_val, get_reg_ptr(rd + traits::X0), false); } else { Value* CSRtmp2_val = rs_val_val; this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp2_val,this->get_type(32))); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 46); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 47: CSRRS */ std::tuple __csrrs(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRS"); this->gen_sync(PRE_SYNC, 47); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrs"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* xrd_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); Value* xrs1_val = this->gen_reg_load(rs1 + traits::X0, 0); if(rd != 0){ Value* Xtmp0_val = xrd_val; this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } if(rs1 != 0){ Value* CSRtmp1_val = this->builder.CreateOr( xrd_val, xrs1_val); this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp1_val,this->get_type(32))); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 47); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 48: CSRRC */ std::tuple __csrrc(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRC"); this->gen_sync(PRE_SYNC, 48); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t rs1 = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {rs1}", fmt::arg("mnemonic", "csrrc"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("rs1", name(rs1))); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* xrd_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); Value* xrs1_val = this->gen_reg_load(rs1 + traits::X0, 0); if(rd != 0){ Value* Xtmp0_val = xrd_val; this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } if(rs1 != 0){ Value* CSRtmp1_val = this->builder.CreateAnd( xrd_val, this->builder.CreateNot(xrs1_val)); this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp1_val,this->get_type(32))); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 48); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 49: CSRRWI */ std::tuple __csrrwi(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRWI"); this->gen_sync(PRE_SYNC, 49); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrwi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; if(rd != 0){ Value* Xtmp0_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } Value* CSRtmp1_val = this->gen_ext( this->gen_const(32U, zimm), 32, false); this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp1_val,this->get_type(32))); this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 49); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 50: CSRRSI */ std::tuple __csrrsi(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRSI"); this->gen_sync(PRE_SYNC, 50); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrsi"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* res_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); if(zimm != 0){ Value* CSRtmp0_val = this->builder.CreateOr( res_val, this->gen_ext( this->gen_const(32U, zimm), 32, false)); this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp0_val,this->get_type(32))); } if(rd != 0){ Value* Xtmp1_val = res_val; this->builder.CreateStore(Xtmp1_val, get_reg_ptr(rd + traits::X0), false); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 50); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /* instruction 51: CSRRCI */ std::tuple __csrrci(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ bb->setName("CSRRCI"); this->gen_sync(PRE_SYNC, 51); uint8_t rd = ((bit_sub<7,5>(instr))); uint8_t zimm = ((bit_sub<15,5>(instr))); uint16_t csr = ((bit_sub<20,12>(instr))); if(this->disass_enabled){ /* generate console output when executing the command */ auto mnemonic = fmt::format( "{mnemonic:10} {rd}, {csr}, {zimm:#0x}", fmt::arg("mnemonic", "csrrci"), fmt::arg("rd", name(rd)), fmt::arg("csr", csr), fmt::arg("zimm", zimm)); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } Value* cur_pc_val = this->gen_const(32, pc.val); pc=pc+4; Value* res_val = this->gen_read_mem(traits::CSR, this->gen_const(16U, csr), 32/8); if(rd != 0){ Value* Xtmp0_val = res_val; this->builder.CreateStore(Xtmp0_val, get_reg_ptr(rd + traits::X0), false); } if(zimm != 0){ Value* CSRtmp1_val = this->builder.CreateAnd( res_val, this->builder.CreateNot(this->gen_ext( this->gen_const(32U, zimm), 32, false))); this->gen_write_mem( traits::CSR, this->gen_const(16U, csr), this->builder.CreateZExtOrTrunc(CSRtmp1_val,this->get_type(32))); } this->gen_set_pc(pc, traits::NEXT_PC); this->gen_sync(POST_SYNC, 51); bb = BasicBlock::Create(this->mod->getContext(), "entry", this->func, this->leave_blk); /* create next BasicBlock in chain */ this->gen_trap_check(bb); return std::make_tuple(CONT, bb); } /**************************************************************************** * end opcode definitions ****************************************************************************/ std::tuple illegal_intruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) { this->gen_sync(iss::PRE_SYNC, instr_descr.size()); this->builder.CreateStore(this->builder.CreateLoad(get_reg_ptr(traits::NEXT_PC), true), get_reg_ptr(traits::PC), true); this->builder.CreateStore( this->builder.CreateAdd(this->builder.CreateLoad(get_reg_ptr(traits::ICOUNT), true), this->gen_const(64U, 1)), get_reg_ptr(traits::ICOUNT), true); pc = pc + ((instr & 3) == 3 ? 4 : 2); this->gen_raise_trap(0, 2); // illegal instruction trap this->gen_sync(iss::POST_SYNC, instr_descr.size()); this->gen_trap_check(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { qlut[0] = lut_00.data(); qlut[1] = lut_01.data(); qlut[2] = lut_10.data(); qlut[3] = lut_11.data(); for (auto instr : instr_descr) { auto quantrant = instr.value & 0x3; expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op); } } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) { // we fetch at max 4 byte, alignment is 2 enum {TRAP_ID=1<<16}; code_word_t insn = 0; const typename traits::addr_t upper_bits = ~traits::PGMASK; phys_addr_t paddr(pc); auto *const data = (uint8_t *)&insn; paddr = this->core.v2p(pc); if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary auto res = this->core.read(paddr, 2, data); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); if ((insn & 0x3) == 0x3) { // this is a 32bit instruction res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); } } else { auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); } if (insn == 0x0000006f || (insn&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' // curr pc on stack ++inst_cnt; auto lut_val = extract_fields(insn); auto f = qlut[insn & 0x3][lut_val]; if (f == nullptr) { f = &this_class::illegal_intruction; } return (this->*f)(pc, insn, this_block); } template void vm_impl::gen_leave_behavior(BasicBlock *leave_blk) { this->builder.SetInsertPoint(leave_blk); this->builder.CreateRet(this->builder.CreateLoad(get_reg_ptr(arch::traits::NEXT_PC), false)); } template void vm_impl::gen_raise_trap(uint16_t trap_id, uint16_t cause) { auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id); this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); } template void vm_impl::gen_leave_trap(unsigned lvl) { std::vector args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) }; this->builder.CreateCall(this->mod->getFunction("leave_trap"), args); auto *PC_val = this->gen_read_mem(traits::CSR, (lvl << 8) + 0x41, traits::XLEN / 8); this->builder.CreateStore(PC_val, get_reg_ptr(traits::NEXT_PC), false); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); } template void vm_impl::gen_wait(unsigned type) { std::vector args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) }; this->builder.CreateCall(this->mod->getFunction("wait"), args); } template void vm_impl::gen_trap_behavior(BasicBlock *trap_blk) { this->builder.SetInsertPoint(trap_blk); auto *trap_state_val = this->builder.CreateLoad(get_reg_ptr(traits::TRAP_STATE), true); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); std::vector args{this->core_ptr, this->adj_to64(trap_state_val), this->adj_to64(this->builder.CreateLoad(get_reg_ptr(traits::PC), false))}; this->builder.CreateCall(this->mod->getFunction("enter_trap"), args); auto *trap_addr_val = this->builder.CreateLoad(get_reg_ptr(traits::NEXT_PC), false); this->builder.CreateRet(trap_addr_val); } template inline void vm_impl::gen_trap_check(BasicBlock *bb) { auto *v = this->builder.CreateLoad(get_reg_ptr(arch::traits::TRAP_STATE), true); this->gen_cond_branch(this->builder.CreateICmp( ICmpInst::ICMP_EQ, v, ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))), bb, this->trap_blk, 1); } } // namespace tgf_b template <> std::unique_ptr create(arch::tgf_b *core, unsigned short port, bool dump) { auto ret = new tgf_b::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace llvm } // namespace iss