/******************************************************************************* * Copyright (C) 2021 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ #include "../fp_functions.h" #include #include #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace interp { namespace ${coreDef.name.toLowerCase()} { using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::interp::vm_base { public: using traits = arch::traits; using super = typename iss::interp::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; using reg_t = typename traits::reg_t; using mem_type_e = typename traits::mem_type_e; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (super::tgt_adapter == nullptr) super::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return super::tgt_adapter; } protected: using this_class = vm_impl; using compile_ret_t = virt_addr_t; using compile_func = compile_ret_t (this_class::*)(virt_addr_t &pc, code_word_t instr); inline const char *name(size_t index){return traits::reg_aliases.at(index);} virt_addr_t execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit) override; // some compile time constants // enum { MASK16 = 0b1111110001100011, MASK32 = 0b11111111111100000111000001111111 }; enum { MASK16 = 0b1111111111111111, MASK32 = 0b11111111111100000111000001111111 }; enum { EXTR_MASK16 = MASK16 >> 2, EXTR_MASK32 = MASK32 >> 2 }; enum { LUT_SIZE = 1 << util::bit_count(EXTR_MASK32), LUT_SIZE_C = 1 << util::bit_count(EXTR_MASK16) }; std::array lut; std::array lut_00, lut_01, lut_10; std::array lut_11; std::array qlut; std::array lutmasks = {{EXTR_MASK16, EXTR_MASK16, EXTR_MASK16, EXTR_MASK32}}; void expand_bit_mask(int pos, uint32_t mask, uint32_t value, uint32_t valid, uint32_t idx, compile_func lut[], compile_func f) { if (pos < 0) { lut[idx] = f; } else { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, idx, lut, f); } else { if ((valid & bitmask) == 0) { expand_bit_mask(pos - 1, mask, value, valid, (idx << 1), lut, f); expand_bit_mask(pos - 1, mask, value, valid, (idx << 1) + 1, lut, f); } else { auto new_val = idx << 1; if ((value & bitmask) != 0) new_val++; expand_bit_mask(pos - 1, mask, value, valid, new_val, lut, f); } } } } inline uint32_t extract_fields(uint32_t val) { return extract_fields(29, val >> 2, lutmasks[val & 0x3], 0); } uint32_t extract_fields(int pos, uint32_t val, uint32_t mask, uint32_t lut_val) { if (pos >= 0) { auto bitmask = 1UL << pos; if ((mask & bitmask) == 0) { lut_val = extract_fields(pos - 1, val, mask, lut_val); } else { auto new_val = lut_val << 1; if ((val & bitmask) != 0) new_val++; lut_val = extract_fields(pos - 1, val, mask, new_val); } } return lut_val; } inline void raise(uint16_t trap_id, uint16_t cause){ auto trap_val = 0x80ULL << 24 | (cause << 16) | trap_id; this->template get_reg(traits::TRAP_STATE) = trap_val; this->template get_reg(traits::NEXT_PC) = std::numeric_limits::max(); } inline void leave(unsigned lvl){ this->core.leave_trap(lvl); auto pc_val = super::template read_mem(traits::CSR, (lvl << 8) + 0x41); this->template get_reg(traits::NEXT_PC) = pc_val; } inline void wait(unsigned type){ this->core.wait_until(type); } template T& pc_assign(T& val){super::ex_info.branch_taken=true; return val;} inline uint8_t readSpace1(typename super::mem_type_e space, uint64_t addr){return super::template read_mem(space, addr);} inline uint16_t readSpace2(typename super::mem_type_e space, uint64_t addr){return super::template read_mem(space, addr);} inline uint32_t readSpace4(typename super::mem_type_e space, uint64_t addr){return super::template read_mem(space, addr);} inline uint64_t readSpace8(typename super::mem_type_e space, uint64_t addr){return super::template read_mem(space, addr);} inline void writeSpace1(typename super::mem_type_e space, uint64_t addr, uint8_t data){super::write_mem(space, addr, data);} inline void writeSpace2(typename super::mem_type_e space, uint64_t addr, uint16_t data){super::write_mem(space, addr, data);} inline void writeSpace4(typename super::mem_type_e space, uint64_t addr, uint32_t data){super::write_mem(space, addr, data);} inline void writeSpace8(typename super::mem_type_e space, uint64_t addr, uint64_t data){super::write_mem(space, addr, data);} template::type> inline S sext(U from) { auto mask = (1ULL< instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> /* instruction ${instr.instruction.name} */ {${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%> }}; /* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %> /* instruction ${idx}: ${instr.name} */ compile_ret_t __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr){ // pre execution stuff this->do_sync(PRE_SYNC, ${idx}); <%instr.fields.eachLine{%>${it} <%}%>if(this->disass_enabled){ /* generate console output when executing the command */ <%instr.disass.eachLine{%>${it} <%}%> } // prepare execution uint${addrDataWidth}_t* X = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::X0]); uint${addrDataWidth}_t* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); uint${addrDataWidth}_t* NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *NEXT_PC = *PC + ${instr.length/8}; // execute instruction <%instr.behavior.eachLine{%>${it} <%}%>// post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, ${idx}); auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val); } pc.val=*NEXT_PC; return pc; } <%}%> /**************************************************************************** * end opcode definitions ****************************************************************************/ compile_ret_t illegal_intruction(virt_addr_t &pc, code_word_t instr) { this->do_sync(PRE_SYNC, static_cast(arch::traits::opcode_e::MAX_OPCODE)); uint32_t* PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::PC]); uint32_t* NEXT_PC = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::NEXT_PC]); *NEXT_PC = *PC + ((instr & 3) == 3 ? 4 : 2); raise(0, 11); // post execution stuff if(this->sync_exec && POST_SYNC) this->do_sync(POST_SYNC, static_cast(arch::traits::opcode_e::MAX_OPCODE)); auto* trap_state = reinterpret_cast(this->regs_base_ptr+arch::traits::reg_byte_offsets[arch::traits::TRAP_STATE]); // trap check if(*trap_state!=0){ super::core.enter_trap(*trap_state, pc.val); } pc.val=*NEXT_PC; return pc; } static constexpr typename traits::addr_t upper_bits = ~traits::PGMASK; iss::status fetch_ins(virt_addr_t pc, uint8_t * data){ auto phys_pc = this->core.v2p(pc); //if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // if (this->core.read(phys_pc, 2, data) != iss::Ok) return iss::Err; // if ((data[0] & 0x3) == 0x3) // this is a 32bit instruction // if (this->core.read(this->core.v2p(pc + 2), 2, data + 2) != iss::Ok) return iss::Err; //} else { if (this->core.read(phys_pc, 4, data) != iss::Ok) return iss::Err; //} return iss::Ok; } }; template void debug_fn(CODE_WORD insn) { volatile CODE_WORD x = insn; insn = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { qlut[0] = lut_00.data(); qlut[1] = lut_01.data(); qlut[2] = lut_10.data(); qlut[3] = lut_11.data(); for (auto instr : instr_descr) { auto quantrant = instr.value & 0x3; expand_bit_mask(29, lutmasks[quantrant], instr.value >> 2, instr.mask >> 2, 0, qlut[quantrant], instr.op); } } inline bool is_count_limit_enabled(finish_cond_e cond){ return (cond & finish_cond_e::COUNT_LIMIT) == finish_cond_e::COUNT_LIMIT; } template typename vm_base::virt_addr_t vm_impl::execute_inst(finish_cond_e cond, virt_addr_t start, uint64_t icount_limit){ // we fetch at max 4 byte, alignment is 2 enum {TRAP_ID=1<<16}; code_word_t insn = 0; auto *const data = (uint8_t *)&insn; auto pc=start; while(!this->core.should_stop() && !(is_count_limit_enabled(cond) && this->core.get_icount() >= icount_limit)){ auto res = fetch_ins(pc, data); if(res!=iss::Ok){ auto new_pc = super::core.enter_trap(TRAP_ID, pc.val); res = fetch_ins(virt_addr_t{access_type::FETCH, new_pc}, data); if(res!=iss::Ok) throw simulation_stopped(0); } if ((cond & finish_cond_e::JUMP_TO_SELF) && (insn == 0x0000006f || (insn&0xffff)==0xa001)) throw simulation_stopped(0); // 'J 0' or 'C.J 0' auto lut_val = extract_fields(insn); auto f = qlut[insn & 0x3][lut_val]; if (!f) f = &this_class::illegal_intruction; pc = (this->*f)(pc, insn); } return pc; } } // namespace mnrv32 template <> std::unique_ptr create(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { auto ret = new ${coreDef.name.toLowerCase()}::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace interp } // namespace iss