//////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2025, MINRES Technologies GmbH // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Contributors: // alex@minres.com - initial API and implementation //////////////////////////////////////////////////////////////////////////////// #include "vector_functions.h" #include "iss/vm_types.h" #include #include #include #include #include #include #include #include namespace softvector { unsigned RFS = 32; bool softvec_read(void* core, uint64_t addr, uint64_t length, uint8_t* data) { // Read length bytes from addr into *data iss::status status = static_cast(core)->read(iss::address_type::PHYSICAL, iss::access_type::READ, 0 /*traits::MEM*/, addr, length, data); return status == iss::Ok; } bool softvec_write(void* core, uint64_t addr, uint64_t length, uint8_t* data) { // Write length bytes from addr into *data iss::status status = static_cast(core)->write(iss::address_type::PHYSICAL, iss::access_type::READ, 0 /*traits::MEM*/, addr, length, data); return status == iss::Ok; } using vlen_t = uint64_t; struct vreg_view { uint8_t* start; size_t size; template T& get(size_t idx = 0) { assert((idx * sizeof(T)) <= size); return *(reinterpret_cast(start) + idx); } }; vtype_t::vtype_t(uint32_t vtype_val) { underlying = (vtype_val & 0x8000) << 32 | (vtype_val & ~0x8000); } vtype_t::vtype_t(uint64_t vtype_val) { underlying = vtype_val; } bool vtype_t::vill() { return underlying >> 31; } bool vtype_t::vma() { return (underlying >> 7) & 1; } bool vtype_t::vta() { return (underlying >> 6) & 1; } unsigned vtype_t::sew() { uint8_t vsew = (underlying >> 3) & 0b111; // pow(2, 3 + vsew); return 1 << (3 + vsew); } double vtype_t::lmul() { uint8_t vlmul = underlying & 0b111; assert(vlmul != 0b100); // reserved encoding int8_t signed_vlmul = (vlmul >> 2) ? 0b11111000 | vlmul : vlmul; return pow(2, signed_vlmul); } vreg_view read_vmask(uint8_t* V, uint16_t VLEN, uint16_t elem_count, uint8_t reg_idx) { uint8_t* mask_start = V + VLEN / 8 * reg_idx; return {mask_start, elem_count / 8u}; // this can return size==0 as elem_count can be as low as 1 } uint64_t vector_load_store(void* core, std::function load_store_fn, uint8_t* V, uint16_t VLEN, uint8_t addressed_register, uint64_t base_addr, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, uint8_t elem_size_byte, uint64_t elem_count, int8_t EMUL_pow, uint8_t segment_size, int64_t stride) { // eew = elem_size_byte * 8 assert(pow(2, EMUL_pow) * segment_size <= 8); assert(segment_size > 0); assert((elem_count & (elem_count - 1)) == 0); // check that elem_count is power of 2 assert(elem_count <= VLEN * RFS / 8); unsigned emul_stride = EMUL_pow <= 0 ? 1 : pow(2, EMUL_pow); assert(emul_stride * segment_size <= 8); assert(!(addressed_register % emul_stride)); vreg_view mask_view = read_vmask(V, VLEN, elem_count, 0); // elements w/ index smaller than vstart are in the prestart and get skipped // body is from vstart to min(elem_count, vl) for(unsigned idx = vstart; idx < std::min(elem_count, vl); idx++) { unsigned trap_idx = idx; uint8_t current_mask_byte = mask_view.get(idx / 8); bool mask_active = vm ? 1 : current_mask_byte & (1 << idx % 8); if(mask_active) { for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (elem_size_byte * idx) + (VLEN / 8 * s_idx * emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); uint64_t addr = base_addr + (elem_size_byte) * (idx * segment_size + s_idx) * stride; if(!load_store_fn(core, addr, elem_size_byte, addressed_elem)) return trap_idx; } } else { for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (elem_size_byte * idx) + (VLEN / 8 * s_idx * emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); // this only updates the first 8 bits, so eew > 8 would not work correctly *addressed_elem = vtype.vma() ? *addressed_elem : *addressed_elem; } } } // elements w/ index larger than elem_count are in the tail (fractional LMUL) // elements w/ index larger than vl are in the tail for(unsigned idx = std::min(elem_count, vl); idx < VLEN / 8; idx++) { for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (elem_size_byte * idx) + (VLEN / 8 * s_idx * emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); // this only updates the first 8 bits, so eew > 8 would not work correctly *addressed_elem = vtype.vta() ? *addressed_elem : *addressed_elem; } } return 0; } int64_t read_n_bits(uint8_t* V, unsigned n) { switch(n) { case 8: return static_cast(*reinterpret_cast(V)); case 16: return static_cast(*reinterpret_cast(V)); case 32: return static_cast(*reinterpret_cast(V)); case 64: return static_cast(*reinterpret_cast(V)); default: throw new std::invalid_argument("Invalid arg in read_n_bits"); } } // this function behaves similar to vector_load_store(...) with the key difference that the SEW and LMUL from the parameters apply to the // index registers (instead of the data registers) and the SEW and LMUL encoded in vtype apply to the data registers uint64_t vector_load_store_index(void* core, std::function load_store_fn, uint8_t* V, uint16_t VLEN, uint8_t XLEN, uint8_t addressed_register, uint8_t index_register, uint64_t base_addr, uint64_t vl, uint64_t vstart, vtype_t vtype, bool vm, uint8_t index_elem_size_byte, uint64_t elem_count, uint8_t segment_size, bool ordered) { // index_eew = index_elem_size_byte * 8 // for now ignore the ordered parameter, as all indexed operations are implementes as ordered assert(segment_size > 0); assert((elem_count & (elem_count - 1)) == 0); // check that elem_count is power of 2 assert(elem_count <= VLEN * RFS / 8); unsigned data_emul_stride = vtype.lmul() < 0 ? 0 : vtype.lmul(); assert(data_emul_stride * segment_size <= 8); unsigned data_elem_size_byte = vtype.sew() / 8; assert(!(addressed_register % data_emul_stride)); vreg_view mask_view = read_vmask(V, VLEN, elem_count, 0); // elements w/ index smaller than vstart are in the prestart and get skipped // body is from vstart to min(elem_count, vl) for(unsigned idx = vstart; idx < std::min(elem_count, vl); idx++) { unsigned trap_idx = idx; uint8_t current_mask_byte = mask_view.get(idx / 8); bool mask_active = vm ? 1 : current_mask_byte & (1 << idx % 8); if(mask_active) { uint8_t* offset_elem = V + (index_register * VLEN / 8) + (index_elem_size_byte * idx); assert(offset_elem <= (V + VLEN * RFS / 8 - index_elem_size_byte)); // ensure reading index_elem_size_bytes is legal // read sew bits from offset_elem truncate / extend to XLEN bits int64_t offset_val = read_n_bits(offset_elem, index_elem_size_byte * 8); assert(XLEN == 64 | XLEN == 32); uint64_t mask = XLEN == 64 ? std::numeric_limits::max() : std::numeric_limits::max(); unsigned index_offset = offset_val & mask; for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (data_elem_size_byte * idx) + (VLEN / 8 * s_idx * data_emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); // base + offset + current_segment uint64_t addr = base_addr + index_offset + s_idx * data_elem_size_byte; if(!load_store_fn(core, addr, data_elem_size_byte, addressed_elem)) return trap_idx; } } else { for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (data_elem_size_byte * idx) + (VLEN / 8 * s_idx * data_emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); // this only updates the first 8 bits, so eew > 8 would not work correctly *addressed_elem = vtype.vma() ? *addressed_elem : *addressed_elem; } } } // elements w/ index larger than elem_count are in the tail (fractional LMUL) // elements w/ index larger than vl are in the tail for(unsigned idx = std::min(elem_count, vl); idx < VLEN / 8; idx++) { for(unsigned s_idx = 0; s_idx < segment_size; s_idx++) { // base + selected register + current_elem + current_segment uint8_t* addressed_elem = V + (addressed_register * VLEN / 8) + (data_elem_size_byte * idx) + (VLEN / 8 * s_idx * data_emul_stride); assert(addressed_elem <= V + VLEN * RFS / 8); // this only updates the first 8 bits, so eew > 8 would not work correctly *addressed_elem = vtype.vta() ? *addressed_elem : *addressed_elem; } } return 0; } } // namespace softvector