/******************************************************************************* * Copyright (C) 2021 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Contributors: * eyck@minres.com - initial implementation ******************************************************************************/ #ifndef _RISCV_HART_M_P_H #define _RISCV_HART_M_P_H #include "riscv_hart_common.h" #include "iss/arch/traits.h" #include "iss/instrumentation_if.h" #include "iss/log_categories.h" #include "iss/vm_if.h" #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else #define likely(x) x #define unlikely(x) x #endif namespace iss { namespace arch { template class riscv_hart_m_p : public BASE { protected: const std::array lvl = {{'U', 'S', 'H', 'M'}}; const std::array trap_str = {{"" "Instruction address misaligned", // 0 "Instruction access fault", // 1 "Illegal instruction", // 2 "Breakpoint", // 3 "Load address misaligned", // 4 "Load access fault", // 5 "Store/AMO address misaligned", // 6 "Store/AMO access fault", // 7 "Environment call from U-mode", // 8 "Environment call from S-mode", // 9 "Reserved", // a "Environment call from M-mode", // b "Instruction page fault", // c "Load page fault", // d "Reserved", // e "Store/AMO page fault"}}; const std::array irq_str = { {"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt", "User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}}; public: using core = BASE; using this_class = riscv_hart_m_p; using phys_addr_t = typename core::phys_addr_t; using reg_t = typename core::reg_t; using addr_t = typename core::addr_t; using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &); using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t); // primary template template struct hart_state {}; // specialization 32bit template class hart_state::value>::type> { public: BEGIN_BF_DECL(mstatus_t, T); // SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11))) BF_FIELD(SD, 31, 1); // Trap SRET BF_FIELD(TSR, 22, 1); // Timeout Wait BF_FIELD(TW, 21, 1); // Trap Virtual Memory BF_FIELD(TVM, 20, 1); // Make eXecutable Readable BF_FIELD(MXR, 19, 1); // permit Supervisor User Memory access BF_FIELD(SUM, 18, 1); // Modify PRiVilege BF_FIELD(MPRV, 17, 1); // status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty BF_FIELD(XS, 15, 2); // floating-point unit status Off/Initial/Clean/Dirty BF_FIELD(FS, 13, 2); // machine previous privilege BF_FIELD(MPP, 11, 2); // supervisor previous privilege BF_FIELD(SPP, 8, 1); // previous machine interrupt-enable BF_FIELD(MPIE, 7, 1); // previous supervisor interrupt-enable BF_FIELD(SPIE, 5, 1); // previous user interrupt-enable BF_FIELD(UPIE, 4, 1); // machine interrupt-enable BF_FIELD(MIE, 3, 1); // supervisor interrupt-enable BF_FIELD(SIE, 1, 1); // user interrupt-enable BF_FIELD(UIE, 0, 1); END_BF_DECL(); mstatus_t mstatus; static const reg_t mstatus_reset_val = 0; void write_mstatus(T val) { auto mask = get_mask(); auto new_val = (mstatus.backing.val & ~mask) | (val & mask); mstatus = new_val; } T satp; static constexpr uint32_t get_mask() { return 0x807ff9ddUL; // 0b1000 0000 0111 1111 1111 1001 1011 1011 // only machine mode is supported } }; using hart_state_type = hart_state; constexpr reg_t get_irq_mask() { return 0b101110111011; // only machine mode is supported } riscv_hart_m_p(); virtual ~riscv_hart_m_p() = default; void reset(uint64_t address) override; std::pair load_file(std::string name, int type = -1) override; iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t *const data) override; iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t *const data) override; virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); } virtual uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override; virtual uint64_t leave_trap(uint64_t flags) override; const reg_t& get_mhartid() const { return mhartid_reg; } void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; }; void disass_output(uint64_t pc, const std::string instr) override { CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", pc, instr, (reg_t)state.mstatus, this->reg.icount); }; iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; } void setMemReadCb(std::function const& memReadCb) { mem_read_cb = memReadCb; } void setMemWriteCb(std::function const& memWriteCb) { mem_write_cb = memWriteCb; } void set_csr(unsigned addr, reg_t val){ csr[addr & csr.page_addr_mask] = val; } protected: struct riscv_instrumentation_if : public iss::instrumentation_if { riscv_instrumentation_if(riscv_hart_m_p &arch) : arch(arch) {} /** * get the name of this architecture * * @return the name of this architecture */ const std::string core_type_name() const override { return traits::core_type; } virtual uint64_t get_pc() { return arch.get_pc(); }; virtual uint64_t get_next_pc() { return arch.get_next_pc(); }; virtual void set_curr_instr_cycles(unsigned cycles) { arch.cycle_offset += cycles - 1; }; riscv_hart_m_p &arch; }; friend struct riscv_instrumentation_if; addr_t get_pc() { return this->reg.PC; } addr_t get_next_pc() { return this->reg.NEXT_PC; } virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data); virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data); virtual iss::status read_csr(unsigned addr, reg_t &val); virtual iss::status write_csr(unsigned addr, reg_t val); hart_state_type state; int64_t cycle_offset{0}; uint64_t mcycle_csr{0}; int64_t instret_offset{0}; uint64_t minstret_csr{0}; reg_t fault_data; uint64_t tohost = tohost_dflt; uint64_t fromhost = fromhost_dflt; unsigned to_host_wr_cnt = 0; riscv_instrumentation_if instr_if; using mem_type = util::sparse_array; using csr_type = util::sparse_array::reg_t, 1ULL << 12, 12>; using csr_page_type = typename csr_type::page_type; mem_type mem; csr_type csr; std::stringstream uart_buf; std::unordered_map ptw; std::unordered_map atomic_reservation; std::unordered_map csr_rd_cb; std::unordered_map csr_wr_cb; private: iss::status read_reg(unsigned addr, reg_t &val); iss::status write_reg(unsigned addr, reg_t val); iss::status read_null(unsigned addr, reg_t &val); iss::status write_null(unsigned addr, reg_t val){return iss::status::Ok;} iss::status read_cycle(unsigned addr, reg_t &val); iss::status write_cycle(unsigned addr, reg_t val); iss::status read_instret(unsigned addr, reg_t &val); iss::status write_instret(unsigned addr, reg_t val); iss::status read_mtvec(unsigned addr, reg_t &val); iss::status read_time(unsigned addr, reg_t &val); iss::status read_status(unsigned addr, reg_t &val); iss::status write_status(unsigned addr, reg_t val); iss::status read_ie(unsigned addr, reg_t &val); iss::status write_ie(unsigned addr, reg_t val); iss::status read_ip(unsigned addr, reg_t &val); iss::status write_ip(unsigned addr, reg_t val); iss::status read_hartid(unsigned addr, reg_t &val); reg_t mhartid_reg{0x0}; std::functionmem_read_cb; std::function mem_write_cb; protected: void check_interrupt(); }; template riscv_hart_m_p::riscv_hart_m_p() : state() , instr_if(*this) { csr[misa] = traits::MISA_VAL; uart_buf.str(""); for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_reg; } for (unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_reg; } for (unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_reg; } for (unsigned addr = cycle; addr <= hpmcounter31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_reg; } for (unsigned addr = cycleh; addr <= hpmcounter31h; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_reg; } // common regs const std::array addrs{{misa, mepc, mtvec, mscratch, mcause, mtval, mscratch}}; for(auto addr: addrs) { csr_rd_cb[addr] = &this_class::read_reg; csr_wr_cb[addr] = &this_class::write_reg; } // special handling & overrides csr_rd_cb[time] = &this_class::read_time; csr_wr_cb[time] = nullptr; csr_rd_cb[timeh] = &this_class::read_time; csr_wr_cb[timeh] = nullptr; csr_rd_cb[mcycle] = &this_class::read_cycle; csr_wr_cb[mcycle] = &this_class::write_cycle; csr_rd_cb[mcycleh] = &this_class::read_cycle; csr_wr_cb[mcycleh] = &this_class::write_cycle; csr_rd_cb[minstret] = &this_class::read_instret; csr_wr_cb[minstret] = &this_class::write_instret; csr_rd_cb[minstreth] = &this_class::read_instret; csr_wr_cb[minstreth] = &this_class::write_instret; csr_rd_cb[mstatus] = &this_class::read_status; csr_wr_cb[mstatus] = &this_class::write_status; csr_rd_cb[mip] = &this_class::read_ip; csr_wr_cb[mip] = &this_class::write_ip; csr_rd_cb[mie] = &this_class::read_ie; csr_wr_cb[mie] = &this_class::write_ie; csr_rd_cb[mhartid] = &this_class::read_hartid; csr_rd_cb[mcounteren] = &this_class::read_null; csr_wr_cb[mcounteren] = &this_class::write_null; csr_rd_cb[mtvec] = &this_class::read_mtvec; csr_wr_cb[misa] = &this_class::write_null; } template std::pair riscv_hart_m_p::load_file(std::string name, int type) { FILE *fp = fopen(name.c_str(), "r"); if (fp) { std::array buf; auto n = fread(buf.data(), 1, 4, fp); if (n != 4) throw std::runtime_error("input file has insufficient size"); buf[4] = 0; if (strcmp(buf.data() + 1, "ELF") == 0) { fclose(fp); // Create elfio reader ELFIO::elfio reader; // Load ELF data if (!reader.load(name)) throw std::runtime_error("could not process elf file"); // check elf properties if (reader.get_class() != ELFCLASS32) if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file"); if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file"); if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file"); for (const auto pseg : reader.segments) { const auto fsize = pseg->get_file_size(); // 0x42c/0x0 const auto seg_data = pseg->get_data(); if (fsize > 0) { auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits::MEM, pseg->get_physical_address(), fsize, reinterpret_cast(seg_data)); if (res != iss::Ok) LOG(ERROR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address(); } } for (const auto sec : reader.sections) { if (sec->get_name() == ".tohost") { tohost = sec->get_address(); fromhost = tohost + 0x40; } } return std::make_pair(reader.get_entry(), true); } throw std::runtime_error("memory load file is not a valid elf file"); } throw std::runtime_error("memory load file not found"); } template iss::status riscv_hart_m_p::read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t *const data) { #ifndef NDEBUG if (access && iss::access_type::DEBUG) { LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr; } else if(access && iss::access_type::FETCH){ LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr; } else { LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr; } #endif try { switch (space) { case traits::MEM: { if (unlikely((access == iss::access_type::FETCH || access == iss::access_type::DEBUG_FETCH) && (addr & 0x1) == 1)) { fault_data = addr; if (access && iss::access_type::DEBUG) throw trap_access(0, addr); this->reg.trap_state = (1 << 31); // issue trap 0 return iss::Err; } try { auto res = type==iss::address_type::PHYSICAL? read_mem( BASE::v2p(phys_addr_t{access, space, addr}), length, data): read_mem( BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); if (unlikely(res != iss::Ok)) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault return res; } catch (trap_access &ta) { this->reg.trap_state = (1 << 31) | ta.id; return iss::Err; } } break; case traits::CSR: { if (length != sizeof(reg_t)) return iss::Err; return read_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: { if ((addr + length) > mem.size()) return iss::Err; return iss::Ok; } break; case traits::RES: { auto it = atomic_reservation.find(addr); if (it != atomic_reservation.end() && it->second != 0) { memset(data, 0xff, length); atomic_reservation.erase(addr); } else memset(data, 0, length); } break; default: return iss::Err; // assert("Not supported"); } return iss::Ok; } catch (trap_access &ta) { this->reg.trap_state = (1 << 31) | ta.id; return iss::Err; } } template iss::status riscv_hart_m_p::write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t *const data) { #ifndef NDEBUG const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : ""; switch (length) { case 8: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 4: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 2: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 1: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; default: LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr; } #endif try { switch (space) { case traits::MEM: { if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { fault_data = addr; if (access && iss::access_type::DEBUG) throw trap_access(0, addr); this->reg.trap_state = (1 << 31); // issue trap 0 return iss::Err; } try { auto res = type==iss::address_type::PHYSICAL? write_mem(phys_addr_t{access, space, addr}, length, data): write_mem(BASE::v2p(iss::addr_t{access, type, space, addr}), length, data); if (unlikely(res != iss::Ok)) this->reg.trap_state = (1 << 31) | (5 << 16); // issue trap 7 (Store/AMO access fault) return res; } catch (trap_access &ta) { this->reg.trap_state = (1 << 31) | ta.id; return iss::Err; } phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr}); if ((paddr.val + length) > mem.size()) return iss::Err; switch (paddr.val) { case 0x10013000: // UART0 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg uart_buf << (char)data[0]; if (((char)data[0]) == '\n' || data[0] == 0) { // LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send // '"<::CSR: { if (length != sizeof(reg_t)) return iss::Err; return write_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: { if ((addr + length) > mem.size()) return iss::Err; switch (addr) { case 2: case 3: { ptw.clear(); auto tvm = state.mstatus.TVM; return iss::Ok; } } } break; case traits::RES: { atomic_reservation[addr] = data[0]; } break; default: return iss::Err; } return iss::Ok; } catch (trap_access &ta) { this->reg.trap_state = (1 << 31) | ta.id; return iss::Err; } } template iss::status riscv_hart_m_p::read_csr(unsigned addr, reg_t &val) { if (addr >= csr.size()) return iss::Err; auto req_priv_lvl = (addr >> 8) & 0x3; if (this->reg.PRIV < req_priv_lvl) // not having required privileges throw illegal_instruction_fault(this->fault_data); auto it = csr_rd_cb.find(addr); if (it == csr_rd_cb.end() || !it->second) // non existent register throw illegal_instruction_fault(this->fault_data); return (this->*(it->second))(addr, val); } template iss::status riscv_hart_m_p::write_csr(unsigned addr, reg_t val) { if (addr >= csr.size()) return iss::Err; auto req_priv_lvl = (addr >> 8) & 0x3; if (this->reg.PRIV < req_priv_lvl) // not having required privileges throw illegal_instruction_fault(this->fault_data); if((addr&0xc00)==0xc00) // writing to read-only region throw illegal_instruction_fault(this->fault_data); auto it = csr_wr_cb.find(addr); if (it == csr_wr_cb.end() || !it->second) // non existent register throw illegal_instruction_fault(this->fault_data); return (this->*(it->second))(addr, val); } template iss::status riscv_hart_m_p::read_reg(unsigned addr, reg_t &val) { val = csr[addr]; return iss::Ok; } template iss::status riscv_hart_m_p::read_null(unsigned addr, reg_t &val) { val = 0; return iss::Ok; } template iss::status riscv_hart_m_p::write_reg(unsigned addr, reg_t val) { csr[addr] = val; return iss::Ok; } template iss::status riscv_hart_m_p::read_cycle(unsigned addr, reg_t &val) { auto cycle_val = this->reg.icount + cycle_offset; if (addr == mcycle) { val = static_cast(cycle_val); } else if (addr == mcycleh) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(cycle_val >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::write_cycle(unsigned addr, reg_t val) { if (sizeof(typename traits::reg_t) != 4) { if (addr == mcycleh) return iss::Err; mcycle_csr = static_cast(val); } else { if (addr == mcycle) { mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val; } else { mcycle_csr = (static_cast(val)<<32) + (mcycle_csr & 0xffffffff); } } cycle_offset = mcycle_csr-this->reg.icount; // TODO: relying on wrap-around return iss::Ok; } template iss::status riscv_hart_m_p::read_instret(unsigned addr, reg_t &val) { if (addr == minstret) { val = static_cast(this->reg.instret); } else if (addr == minstreth) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(this->reg.instret >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::write_instret(unsigned addr, reg_t val) { if (sizeof(typename traits::reg_t) != 4) { if (addr == minstreth) return iss::Err; this->reg.instret = static_cast(val); } else { if (addr == minstret) { this->reg.instret = (this->reg.instret & 0xffffffff00000000) + val; } else { this->reg.instret = (static_cast(val)<<32) + (this->reg.instret & 0xffffffff); } } this->reg.instret--; return iss::Ok; } template iss::status riscv_hart_m_p::read_time(unsigned addr, reg_t &val) { uint64_t time_val = this->reg.icount / (100000000 / 32768 - 1); //-> ~3052; if (addr == time) { val = static_cast(time_val); } else if (addr == timeh) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(time_val >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::read_mtvec(unsigned addr, reg_t &val) { val = csr[mtvec] & ~2; return iss::Ok; } template iss::status riscv_hart_m_p::read_status(unsigned addr, reg_t &val) { val = state.mstatus & hart_state_type::get_mask(); return iss::Ok; } template iss::status riscv_hart_m_p::write_status(unsigned addr, reg_t val) { state.write_mstatus(val); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_ie(unsigned addr, reg_t &val) { val = csr[mie]; val &= csr[mideleg]; return iss::Ok; } template iss::status riscv_hart_m_p::read_hartid(unsigned addr, reg_t &val) { val = mhartid_reg; return iss::Ok; } template iss::status riscv_hart_m_p::write_ie(unsigned addr, reg_t val) { auto mask = get_irq_mask(); csr[mie] = (csr[mie] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_ip(unsigned addr, reg_t &val) { val = csr[mip]; val &= csr[mideleg]; return iss::Ok; } template iss::status riscv_hart_m_p::write_ip(unsigned addr, reg_t val) { auto mask = get_irq_mask(); mask &= ~(1 << 7); // MTIP is read only csr[mip] = (csr[mip] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) { if(mem_read_cb) return mem_read_cb(paddr, length, data); switch (paddr.val) { case 0x0200BFF8: { // CLINT base, mtime reg if (sizeof(reg_t) < length) return iss::Err; reg_t time_val; this->read_csr(time, time_val); std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data); } break; case 0x10008000: { const mem_type::page_type &p = mem(paddr.val / mem.page_size); uint64_t offs = paddr.val & mem.page_addr_mask; std::copy(p.data() + offs, p.data() + offs + length, data); if (this->reg.icount > 30000) data[3] |= 0x80; } break; default: { for(auto offs=0U; offs iss::status riscv_hart_m_p::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) { if ((paddr.val + length) > mem.size()) return iss::Err; if(mem_write_cb) return mem_write_cb(paddr, length, data); switch (paddr.val) { case 0x10013000: // UART0 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg uart_buf << (char)data[0]; if (((char)data[0]) == '\n' || data[0] == 0) { // LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send // '"<::XLEN == 32 && paddr.val == (tohost + 4)); auto tohost_lower = (traits::XLEN == 32 && paddr.val == tohost); if (tohost_lower || tohost_upper) { uint64_t hostvar = *reinterpret_cast(p.data() + (tohost & mem.page_addr_mask)); if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) { switch (hostvar >> 48) { case 0: if (hostvar != 0x1) { LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation"; } else { LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation"; } this->reg.trap_state=std::numeric_limits::max(); this->interrupt_sim=hostvar; break; //throw(iss::simulation_stopped(hostvar)); case 0x0101: { char c = static_cast(hostvar & 0xff); if (c == '\n' || c == 0) { LOG(INFO) << "tohost send '" << uart_buf.str() << "'"; uart_buf.str(""); } else uart_buf << c; to_host_wr_cnt = 0; } break; default: break; } } else if (tohost_lower) to_host_wr_cnt++; } else if (traits::XLEN == 32 && paddr.val == fromhost + 4) { uint64_t fhostvar = *reinterpret_cast(p.data() + (fromhost & mem.page_addr_mask)); *reinterpret_cast(p.data() + (tohost & mem.page_addr_mask)) = fhostvar; } } } } return iss::Ok; } template inline void riscv_hart_m_p::reset(uint64_t address) { BASE::reset(address); state.mstatus = hart_state_type::mstatus_reset_val; } template void riscv_hart_m_p::check_interrupt() { auto ideleg = csr[mideleg]; // Multiple simultaneous interrupts and traps at the same privilege level are // handled in the following decreasing priority order: // external interrupts, software interrupts, timer interrupts, then finally // any synchronous traps. auto ena_irq = csr[mip] & csr[mie]; bool mie = state.mstatus.MIE; auto m_enabled = this->reg.PRIV < PRIV_M || (this->reg.PRIV == PRIV_M && mie); auto enabled_interrupts = m_enabled ? ena_irq & ~ideleg : 0; if (enabled_interrupts != 0) { int res = 0; while ((enabled_interrupts & 1) == 0) { enabled_interrupts >>= 1; res++; } this->reg.pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id } } template uint64_t riscv_hart_m_p::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) { // flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0] // calculate and write mcause val auto trap_id = bit_sub<0, 16>(flags); auto cause = bit_sub<16, 15>(flags); if (trap_id == 0 && cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause // calculate effective privilege level if (trap_id == 0) { // exception // store ret addr in xepc register csr[mepc] = static_cast(addr); // store actual address instruction of exception csr[mtval] = cause==2?instr:fault_data; fault_data = 0; } else { csr[mepc] = this->reg.NEXT_PC; // store next address if interrupt this->reg.pending_trap = 0; } csr[mcause] = (trap_id << 31) + cause; // update mstatus // xPP field of mstatus is written with the active privilege mode at the time // of the trap; the x PIE field of mstatus // is written with the value of the active interrupt-enable bit at the time of // the trap; and the x IE field of mstatus // is cleared // store the actual privilege level in yPP and store interrupt enable flags state.mstatus.MPP = PRIV_M; state.mstatus.MPIE = state.mstatus.MIE; state.mstatus.MIE = false; // get trap vector auto ivec = csr[mtvec]; // calculate addr// set NEXT_PC to trap addressess to jump to based on MODE // bits in mtvec this->reg.NEXT_PC = ivec & ~0x3UL; if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause; // reset trap state this->reg.PRIV = PRIV_M; this->reg.trap_state = 0; std::array buffer; sprintf(buffer.data(), "0x%016lx", addr); if((flags&0xffffffff) != 0xffffffff) CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")" << " at address " << buffer.data() << " occurred"; return this->reg.NEXT_PC; } template uint64_t riscv_hart_m_p::leave_trap(uint64_t flags) { state.mstatus.MIE = state.mstatus.MPIE; // sets the pc to the value stored in the x epc register. this->reg.NEXT_PC = csr[mepc]; CLOG(INFO, disass) << "Executing xRET"; return this->reg.NEXT_PC; } } // namespace arch } // namespace iss #endif /* _RISCV_HART_M_P_H */