/******************************************************************************* * Copyright (C) 2017-2024 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * *******************************************************************************/ // clang-format off #include #include #include #include #include #include #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include namespace iss { namespace llvm { namespace fp_impl { void add_fp_functions_2_module(::llvm::Module *, unsigned, unsigned); } namespace ${coreDef.name.toLowerCase()} { using namespace ::llvm; using namespace iss::arch; using namespace iss::debugger; template class vm_impl : public iss::llvm::vm_base { public: using traits = arch::traits; using super = typename iss::llvm::vm_base; using virt_addr_t = typename super::virt_addr_t; using phys_addr_t = typename super::phys_addr_t; using code_word_t = typename super::code_word_t; using addr_t = typename super::addr_t; vm_impl(); vm_impl(ARCH &core, unsigned core_id = 0, unsigned cluster_id = 0); void enableDebug(bool enable) { super::sync_exec = super::ALL_SYNC; } target_adapter_if *accquire_target_adapter(server_if *srv) override { debugger_if::dbg_enabled = true; if (vm_base::tgt_adapter == nullptr) vm_base::tgt_adapter = new riscv_target_adapter(srv, this->get_arch()); return vm_base::tgt_adapter; } protected: using vm_base::get_reg_ptr; inline const char *name(size_t index){return traits::reg_aliases.at(index);} template inline ConstantInt *size(T type) { return ConstantInt::get(getContext(), APInt(32, type->getType()->getScalarSizeInBits())); } void setup_module(Module* m) override { super::setup_module(m); iss::llvm::fp_impl::add_fp_functions_2_module(m, traits::FP_REGS_SIZE, traits::XLEN); } inline Value *gen_choose(Value *cond, Value *trueVal, Value *falseVal, unsigned size) { return super::gen_cond_assign(cond, this->gen_ext(trueVal, size), this->gen_ext(falseVal, size)); } std::tuple gen_single_inst_behavior(virt_addr_t &, unsigned int &, BasicBlock *) override; void gen_leave_behavior(BasicBlock *leave_blk) override; void gen_raise_trap(uint16_t trap_id, uint16_t cause); void gen_leave_trap(unsigned lvl); void gen_wait(unsigned type); void set_tval(uint64_t new_tval); void set_tval(Value* new_tval); void gen_trap_behavior(BasicBlock *) override; void gen_instr_prologue(); void gen_instr_epilogue(BasicBlock *bb); inline Value *gen_reg_load(unsigned i, unsigned level = 0) { return this->builder.CreateLoad(this->get_typeptr(i), get_reg_ptr(i), false); } inline void gen_set_pc(virt_addr_t pc, unsigned reg_num) { Value *next_pc_v = this->builder.CreateSExtOrTrunc(this->gen_const(traits::XLEN, pc.val), this->get_type(traits::XLEN)); this->builder.CreateStore(next_pc_v, get_reg_ptr(reg_num), true); } // some compile time constants using this_class = vm_impl; using compile_func = std::tuple (this_class::*)(virt_addr_t &pc, code_word_t instr, BasicBlock *bb); template::type> inline S sext(U from) { auto mask = (1ULL< instrs; std::vector children; uint32_t submask = std::numeric_limits::max(); uint32_t value; decoding_tree_node(uint32_t value) : value(value){} }; decoding_tree_node* root {nullptr}; const std::array instr_descr = {{ /* entries are: size, valid value, valid mask, function ptr */<%instructions.each{instr -> %> /* instruction ${instr.instruction.name}, encoding '${instr.encoding}' */ {${instr.length}, ${instr.encoding}, ${instr.mask}, &this_class::__${generator.functionName(instr.name)}},<%}%> }}; /* instruction definitions */<%instructions.eachWithIndex{instr, idx -> %> /* instruction ${idx}: ${instr.name} */ std::tuple __${generator.functionName(instr.name)}(virt_addr_t& pc, code_word_t instr, BasicBlock* bb){ uint64_t PC = pc.val; <%instr.fields.eachLine{%>${it} <%}%>if(this->disass_enabled){ /* generate console output when executing the command */<%instr.disass.eachLine{%> ${it}<%}%> std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } bb->setName(fmt::format("${instr.name}_0x{:X}",pc.val)); this->gen_sync(PRE_SYNC,${idx}); this->gen_set_pc(pc, traits::PC); this->set_tval(instr); pc=pc+ ${instr.length/8}; this->gen_set_pc(pc, traits::NEXT_PC); this->gen_instr_prologue(); /*generate behavior*/ <%instr.behavior.eachLine{%>${it} <%}%> this->gen_sync(POST_SYNC, ${idx}); this->gen_instr_epilogue(bb); this->builder.CreateBr(bb); return returnValue; } <%}%> /**************************************************************************** * end opcode definitions ****************************************************************************/ std::tuple illegal_instruction(virt_addr_t &pc, code_word_t instr, BasicBlock *bb) { if(this->disass_enabled){ auto mnemonic = std::string("illegal_instruction"); std::vector args { this->core_ptr, this->gen_const(64, pc.val), this->builder.CreateGlobalStringPtr(mnemonic), }; this->builder.CreateCall(this->mod->getFunction("print_disass"), args); } this->gen_sync(iss::PRE_SYNC, instr_descr.size()); this->builder.CreateStore(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), true), get_reg_ptr(traits::PC), true); this->builder.CreateStore( this->builder.CreateAdd(this->builder.CreateLoad(this->get_typeptr(traits::ICOUNT), get_reg_ptr(traits::ICOUNT), true), this->gen_const(64U, 1)), get_reg_ptr(traits::ICOUNT), true); pc = pc + ((instr & 3) == 3 ? 4 : 2); this->set_tval(instr); this->gen_raise_trap(0, 2); // illegal instruction trap this->gen_sync(iss::POST_SYNC, instr_descr.size()); this->gen_instr_epilogue(this->leave_blk); return std::make_tuple(BRANCH, nullptr); } //decoding functionality void populate_decoding_tree(decoding_tree_node* root){ //create submask for(auto instr: root->instrs){ root->submask &= instr.mask; } //put each instr according to submask&encoding into children for(auto instr: root->instrs){ bool foundMatch = false; for(auto child: root->children){ //use value as identifying trait if(child->value == (instr.value&root->submask)){ child->instrs.push_back(instr); foundMatch = true; } } if(!foundMatch){ decoding_tree_node* child = new decoding_tree_node(instr.value&root->submask); child->instrs.push_back(instr); root->children.push_back(child); } } root->instrs.clear(); //call populate_decoding_tree for all children if(root->children.size() >1) for(auto child: root->children){ populate_decoding_tree(child); } else{ //sort instrs by value of the mask, this works bc we want to have the least restrictive one last std::sort(root->children[0]->instrs.begin(), root->children[0]->instrs.end(), [](const instruction_descriptor& instr1, const instruction_descriptor& instr2) { return instr1.mask > instr2.mask; }); } } compile_func decode_instr(decoding_tree_node* node, code_word_t word){ if(!node->children.size()){ if(node->instrs.size() == 1) return node->instrs[0].op; for(auto instr : node->instrs){ if((instr.mask&word) == instr.value) return instr.op; } } else{ for(auto child : node->children){ if (child->value == (node->submask&word)){ return decode_instr(child, word); } } } return nullptr; } }; template void debug_fn(CODE_WORD instr) { volatile CODE_WORD x = instr; instr = 2 * x; } template vm_impl::vm_impl() { this(new ARCH()); } template vm_impl::vm_impl(ARCH &core, unsigned core_id, unsigned cluster_id) : vm_base(core, core_id, cluster_id) { root = new decoding_tree_node(std::numeric_limits::max()); for(auto instr:instr_descr){ root->instrs.push_back(instr); } populate_decoding_tree(root); } template std::tuple vm_impl::gen_single_inst_behavior(virt_addr_t &pc, unsigned int &inst_cnt, BasicBlock *this_block) { // we fetch at max 4 byte, alignment is 2 enum {TRAP_ID=1<<16}; code_word_t instr = 0; // const typename traits::addr_t upper_bits = ~traits::PGMASK; phys_addr_t paddr(pc); auto *const data = (uint8_t *)&instr; if(this->core.has_mmu()) paddr = this->core.virt2phys(pc); //TODO: re-add page handling // if ((pc.val & upper_bits) != ((pc.val + 2) & upper_bits)) { // we may cross a page boundary // auto res = this->core.read(paddr, 2, data); // if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // if ((instr & 0x3) == 0x3) { // this is a 32bit instruction // res = this->core.read(this->core.v2p(pc + 2), 2, data + 2); // } // } else { auto res = this->core.read(paddr, 4, data); if (res != iss::Ok) throw trap_access(TRAP_ID, pc.val); // } if (instr == 0x0000006f || (instr&0xffff)==0xa001) throw simulation_stopped(0); // 'J 0' or 'C.J 0' // curr pc on stack ++inst_cnt; auto f = decode_instr(root, instr); if (f == nullptr) { f = &this_class::illegal_instruction; } return (this->*f)(pc, instr, this_block); } template void vm_impl::gen_leave_behavior(BasicBlock *leave_blk) { this->builder.SetInsertPoint(leave_blk); this->builder.CreateRet(this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC),get_reg_ptr(traits::NEXT_PC), false)); } template void vm_impl::gen_raise_trap(uint16_t trap_id, uint16_t cause) { auto *TRAP_val = this->gen_const(32, 0x80 << 24 | (cause << 16) | trap_id); this->builder.CreateStore(TRAP_val, get_reg_ptr(traits::TRAP_STATE), true); } template void vm_impl::gen_leave_trap(unsigned lvl) { std::vector args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, lvl)) }; this->builder.CreateCall(this->mod->getFunction("leave_trap"), args); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); } template void vm_impl::gen_wait(unsigned type) { std::vector args{ this->core_ptr, ConstantInt::get(getContext(), APInt(64, type)) }; this->builder.CreateCall(this->mod->getFunction("wait"), args); } template inline void vm_impl::set_tval(uint64_t tval) { auto tmp_tval = this->gen_const(64, tval); this->set_tval(tmp_tval); } template inline void vm_impl::set_tval(Value* new_tval) { this->builder.CreateStore(this->gen_ext(new_tval, 64, false), this->tval); } template void vm_impl::gen_trap_behavior(BasicBlock *trap_blk) { this->builder.SetInsertPoint(trap_blk); auto *trap_state_val = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true); auto *cur_pc_val = this->builder.CreateLoad(this->get_typeptr(traits::PC), get_reg_ptr(traits::PC), true); std::vector args{this->core_ptr, this->adj_to64(trap_state_val), this->adj_to64(cur_pc_val), this->adj_to64(this->builder.CreateLoad(this->get_type(64),this->tval))}; this->builder.CreateCall(this->mod->getFunction("enter_trap"), args); this->builder.CreateStore(this->gen_const(32U, std::numeric_limits::max()), get_reg_ptr(traits::LAST_BRANCH), false); auto *trap_addr_val = this->builder.CreateLoad(this->get_typeptr(traits::NEXT_PC), get_reg_ptr(traits::NEXT_PC), false); this->builder.CreateRet(trap_addr_val); } template void vm_impl::gen_instr_prologue() { auto* trap_val = this->builder.CreateLoad(this->get_typeptr(arch::traits::PENDING_TRAP), get_reg_ptr(arch::traits::PENDING_TRAP)); this->builder.CreateStore(trap_val, get_reg_ptr(arch::traits::TRAP_STATE), false); } template void vm_impl::gen_instr_epilogue(BasicBlock *bb) { auto* target_bb = BasicBlock::Create(this->mod->getContext(), "", this->func, bb); auto *v = this->builder.CreateLoad(this->get_typeptr(traits::TRAP_STATE), get_reg_ptr(traits::TRAP_STATE), true); this->gen_cond_branch(this->builder.CreateICmp( ICmpInst::ICMP_EQ, v, ConstantInt::get(getContext(), APInt(v->getType()->getIntegerBitWidth(), 0))), target_bb, this->trap_blk, 1); this->builder.SetInsertPoint(target_bb); // update icount auto* icount_val = this->builder.CreateAdd( this->builder.CreateLoad(this->get_typeptr(arch::traits::ICOUNT), get_reg_ptr(arch::traits::ICOUNT)), this->gen_const(64U, 1)); this->builder.CreateStore(icount_val, get_reg_ptr(arch::traits::ICOUNT), false); } } // namespace ${coreDef.name.toLowerCase()} template <> std::unique_ptr create(arch::${coreDef.name.toLowerCase()} *core, unsigned short port, bool dump) { auto ret = new ${coreDef.name.toLowerCase()}::vm_impl(*core, dump); if (port != 0) debugger::server::run_server(ret, port); return std::unique_ptr(ret); } } // namespace llvm } // namespace iss #include #include #include namespace iss { namespace { volatile std::array dummy = { core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|m_p|llvm", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_m_p(); auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t*, arch::traits::reg_t*)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }), core_factory::instance().register_creator("${coreDef.name.toLowerCase()}|mu_p|llvm", [](unsigned port, void* init_data) -> std::tuple{ auto* cpu = new iss::arch::riscv_hart_mu_p(); auto vm = new llvm::${coreDef.name.toLowerCase()}::vm_impl(*cpu, false); if (port != 0) debugger::server::run_server(vm, port); if(init_data){ auto* cb = reinterpret_cast::reg_t*, arch::traits::reg_t*)>*>(init_data); cpu->set_semihosting_callback(*cb); } return {cpu_ptr{cpu}, vm_ptr{vm}}; }) }; } } // clang-format on