/******************************************************************************* * Copyright (C) 2021 MINRES Technologies GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Contributors: * eyck@minres.com - initial implementation ******************************************************************************/ #ifndef _RISCV_HART_M_P_H #define _RISCV_HART_M_P_H #include "riscv_hart_common.h" #include "iss/arch/traits.h" #include "iss/instrumentation_if.h" #include "iss/log_categories.h" #include "iss/vm_if.h" #ifndef FMT_HEADER_ONLY #define FMT_HEADER_ONLY #endif #include #include #include #include #include #include #include #include #include #include #include #if defined(__GNUC__) #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #else #define likely(x) x #define unlikely(x) x #endif namespace iss { namespace arch { template class riscv_hart_m_p : public BASE { protected: const std::array lvl = {{'U', 'S', 'H', 'M'}}; const std::array trap_str = {{"" "Instruction address misaligned", // 0 "Instruction access fault", // 1 "Illegal instruction", // 2 "Breakpoint", // 3 "Load address misaligned", // 4 "Load access fault", // 5 "Store/AMO address misaligned", // 6 "Store/AMO access fault", // 7 "Environment call from U-mode", // 8 "Environment call from S-mode", // 9 "Reserved", // a "Environment call from M-mode", // b "Instruction page fault", // c "Load page fault", // d "Reserved", // e "Store/AMO page fault"}}; const std::array irq_str = { {"User software interrupt", "Supervisor software interrupt", "Reserved", "Machine software interrupt", "User timer interrupt", "Supervisor timer interrupt", "Reserved", "Machine timer interrupt", "User external interrupt", "Supervisor external interrupt", "Reserved", "Machine external interrupt"}}; public: using core = BASE; using this_class = riscv_hart_m_p; using phys_addr_t = typename core::phys_addr_t; using reg_t = typename core::reg_t; using addr_t = typename core::addr_t; using rd_csr_f = iss::status (this_class::*)(unsigned addr, reg_t &); using wr_csr_f = iss::status (this_class::*)(unsigned addr, reg_t); using mem_read_f = iss::status(phys_addr_t addr, unsigned, uint8_t *const); using mem_write_f = iss::status(phys_addr_t addr, unsigned, uint8_t const *const); // primary template template struct hart_state {}; // specialization 32bit template class hart_state::value>::type> { public: BEGIN_BF_DECL(mstatus_t, T); // SD bit is read-only and is set when either the FS or XS bits encode a Dirty state (i.e., SD=((FS==11) OR XS==11))) BF_FIELD(SD, 31, 1); // Trap SRET BF_FIELD(TSR, 22, 1); // Timeout Wait BF_FIELD(TW, 21, 1); // Trap Virtual Memory BF_FIELD(TVM, 20, 1); // Make eXecutable Readable BF_FIELD(MXR, 19, 1); // permit Supervisor User Memory access BF_FIELD(SUM, 18, 1); // Modify PRiVilege BF_FIELD(MPRV, 17, 1); // status of additional user-mode extensions and associated state, All off/None dirty or clean, some on/None dirty, some clean/Some dirty BF_FIELD(XS, 15, 2); // floating-point unit status Off/Initial/Clean/Dirty BF_FIELD(FS, 13, 2); // machine previous privilege BF_FIELD(MPP, 11, 2); // supervisor previous privilege BF_FIELD(SPP, 8, 1); // previous machine interrupt-enable BF_FIELD(MPIE, 7, 1); // previous supervisor interrupt-enable BF_FIELD(SPIE, 5, 1); // previous user interrupt-enable BF_FIELD(UPIE, 4, 1); // machine interrupt-enable BF_FIELD(MIE, 3, 1); // supervisor interrupt-enable BF_FIELD(SIE, 1, 1); // user interrupt-enable BF_FIELD(UIE, 0, 1); END_BF_DECL(); mstatus_t mstatus; static const reg_t mstatus_reset_val = 0x1800; void write_mstatus(T val) { auto mask = get_mask() &0xff; // MPP is hardcode as 0x3 auto new_val = (mstatus.backing.val & ~mask) | (val & mask); mstatus = new_val; } static constexpr uint32_t get_mask() { //return 0x807ff988UL; // 0b1000 0000 0111 1111 1111 1000 1000 1000 // only machine mode is supported // +-SD // | +-TSR // | |+-TW // | ||+-TVM // | |||+-MXR // | ||||+-SUM // | |||||+-MPRV // | |||||| +-XS // | |||||| | +-FS // | |||||| | | +-MPP // | |||||| | | | +-SPP // | |||||| | | | |+-MPIE // | ||||||/|/|/| || +-MIE return 0b00000000000000000001100010001000; } }; using hart_state_type = hart_state; constexpr reg_t get_irq_mask() { return 0b100010001000; // only machine mode is supported } constexpr reg_t get_pc_mask() { return traits::MISA_VAL&0b0100?~1:~3; } riscv_hart_m_p(); virtual ~riscv_hart_m_p() = default; void reset(uint64_t address) override; std::pair load_file(std::string name, int type = -1) override; iss::status read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t *const data) override; iss::status write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t *const data) override; virtual uint64_t enter_trap(uint64_t flags) override { return riscv_hart_m_p::enter_trap(flags, fault_data, fault_data); } virtual uint64_t enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) override; virtual uint64_t leave_trap(uint64_t flags) override; const reg_t& get_mhartid() const { return mhartid_reg; } void set_mhartid(reg_t mhartid) { mhartid_reg = mhartid; }; void disass_output(uint64_t pc, const std::string instr) override { CLOG(INFO, disass) << fmt::format("0x{:016x} {:40} [s:0x{:x};c:{}]", pc, instr, (reg_t)state.mstatus, this->icount + cycle_offset); }; iss::instrumentation_if *get_instrumentation_if() override { return &instr_if; } void setMemReadCb(std::function const& memReadCb) { mem_read_cb = memReadCb; } void setMemWriteCb(std::function const& memWriteCb) { mem_write_cb = memWriteCb; } void set_csr(unsigned addr, reg_t val){ csr[addr & csr.page_addr_mask] = val; } void set_irq_num(unsigned i) { mcause_max_irq=1< &arch) : arch(arch) {} /** * get the name of this architecture * * @return the name of this architecture */ const std::string core_type_name() const override { return traits::core_type; } uint64_t get_pc() override { return arch.reg.PC; }; uint64_t get_next_pc() override { return arch.reg.NEXT_PC; }; uint64_t get_instr_word() override { return arch.instruction; } uint64_t get_instr_count() override { return arch.icount; } uint64_t get_pendig_traps() override { return arch.trap_state; } uint64_t get_total_cycles() override { return arch.icount + arch.cycle_offset; } void set_curr_instr_cycles(unsigned cycles) override { arch.cycle_offset += cycles - 1; }; riscv_hart_m_p &arch; }; friend struct riscv_instrumentation_if; virtual iss::status read_mem(phys_addr_t addr, unsigned length, uint8_t *const data); virtual iss::status write_mem(phys_addr_t addr, unsigned length, const uint8_t *const data); iss::status read_clic(uint64_t addr, unsigned length, uint8_t *const data); iss::status write_clic(uint64_t addr, unsigned length, const uint8_t *const data); virtual iss::status read_csr(unsigned addr, reg_t &val); virtual iss::status write_csr(unsigned addr, reg_t val); hart_state_type state; int64_t cycle_offset{0}; uint64_t mcycle_csr{0}; int64_t instret_offset{0}; uint64_t minstret_csr{0}; reg_t fault_data; uint64_t tohost = tohost_dflt; uint64_t fromhost = fromhost_dflt; unsigned to_host_wr_cnt = 0; riscv_instrumentation_if instr_if; using mem_type = util::sparse_array; using csr_type = util::sparse_array::reg_t, 1ULL << 12, 12>; using csr_page_type = typename csr_type::page_type; mem_type mem; csr_type csr; std::stringstream uart_buf; std::unordered_map ptw; std::unordered_map atomic_reservation; std::unordered_map csr_rd_cb; std::unordered_map csr_wr_cb; uint8_t clic_cfg_reg{0}; uint32_t clic_info_reg{0}; std::array clic_inttrig_reg; union clic_int_reg_t { struct{ uint8_t ip; uint8_t ie; uint8_t attr; uint8_t ctl; }; uint32_t raw; }; std::vector clic_int_reg; std::vector tcm; iss::status read_csr_reg(unsigned addr, reg_t &val); iss::status write_csr_reg(unsigned addr, reg_t val); iss::status read_null(unsigned addr, reg_t &val); iss::status write_null(unsigned addr, reg_t val){return iss::status::Ok;} iss::status read_cycle(unsigned addr, reg_t &val); iss::status write_cycle(unsigned addr, reg_t val); iss::status read_instret(unsigned addr, reg_t &val); iss::status write_instret(unsigned addr, reg_t val); iss::status read_tvec(unsigned addr, reg_t &val); iss::status read_time(unsigned addr, reg_t &val); iss::status read_status(unsigned addr, reg_t &val); iss::status write_status(unsigned addr, reg_t val); iss::status write_cause(unsigned addr, reg_t val); iss::status read_ie(unsigned addr, reg_t &val); iss::status write_ie(unsigned addr, reg_t val); iss::status read_ip(unsigned addr, reg_t &val); iss::status read_hartid(unsigned addr, reg_t &val); iss::status write_epc(unsigned addr, reg_t val); iss::status write_intstatus(unsigned addr, reg_t val); iss::status write_intthresh(unsigned addr, reg_t val); iss::status write_dcsr_dcsr(unsigned addr, reg_t val); iss::status read_dcsr_reg(unsigned addr, reg_t &val); iss::status write_dcsr_reg(unsigned addr, reg_t val); iss::status read_dpc_reg(unsigned addr, reg_t &val); iss::status write_dpc_reg(unsigned addr, reg_t val); virtual iss::status read_custom_csr_reg(unsigned addr, reg_t &val) {return iss::status::Err;}; virtual iss::status write_custom_csr_reg(unsigned addr, reg_t val) {return iss::status::Err;}; void register_custom_csr_rd(unsigned addr){ csr_rd_cb[addr] = &this_class::read_custom_csr_reg; } void register_custom_csr_wr(unsigned addr){ csr_wr_cb[addr] = &this_class::write_custom_csr_reg; } reg_t mhartid_reg{0x0}; std::functionmem_read_cb; std::function mem_write_cb; void check_interrupt(); bool pmp_check(const access_type type, const uint64_t addr, const unsigned len); std::vector> memfn_range; std::vector> memfn_read; std::vector> memfn_write; void insert_mem_range(uint64_t, uint64_t, std::function, std::function); uint64_t clic_base_addr{0}; unsigned clic_num_irq{0}; unsigned clic_num_trigger{0}; unsigned mcause_max_irq{16}; inline bool debug_mode_active() {return this->reg.PRIV&0x4;} }; template riscv_hart_m_p::riscv_hart_m_p() : state() , instr_if(*this) { // reset values csr[misa] = traits::MISA_VAL; csr[mvendorid] = 0x669; csr[marchid] = traits::MARCHID_VAL; csr[mimpid] = 1; csr[mclicbase] = 0xc0000000; // TODO: should be taken from YAML file uart_buf.str(""); for (unsigned addr = mhpmcounter3; addr <= mhpmcounter31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_csr_reg; } for (unsigned addr = mhpmcounter3h; addr <= mhpmcounter31h; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_csr_reg; } for (unsigned addr = mhpmevent3; addr <= mhpmevent31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; csr_wr_cb[addr] = &this_class::write_csr_reg; } for (unsigned addr = hpmcounter3; addr <= hpmcounter31; ++addr){ csr_rd_cb[addr] = &this_class::read_null; } for (unsigned addr = hpmcounter3h; addr <= hpmcounter31h; ++addr){ csr_rd_cb[addr] = &this_class::read_null; //csr_wr_cb[addr] = &this_class::write_csr_reg; } // common regs const std::array addrs{{misa, mvendorid, marchid, mimpid, mepc, mtvec, mscratch, mcause, mtval, mscratch}}; for(auto addr: addrs) { csr_rd_cb[addr] = &this_class::read_csr_reg; csr_wr_cb[addr] = &this_class::write_csr_reg; } // special handling & overrides csr_rd_cb[time] = &this_class::read_time; csr_rd_cb[timeh] = &this_class::read_time; csr_rd_cb[cycle] = &this_class::read_cycle; csr_rd_cb[cycleh] = &this_class::read_cycle; csr_rd_cb[instret] = &this_class::read_instret; csr_rd_cb[instreth] = &this_class::read_instret; csr_rd_cb[mcycle] = &this_class::read_cycle; csr_wr_cb[mcycle] = &this_class::write_cycle; csr_rd_cb[mcycleh] = &this_class::read_cycle; csr_wr_cb[mcycleh] = &this_class::write_cycle; csr_rd_cb[minstret] = &this_class::read_instret; csr_wr_cb[minstret] = &this_class::write_instret; csr_rd_cb[minstreth] = &this_class::read_instret; csr_wr_cb[minstreth] = &this_class::write_instret; csr_rd_cb[mstatus] = &this_class::read_status; csr_wr_cb[mstatus] = &this_class::write_status; csr_wr_cb[mcause] = &this_class::write_cause; csr_rd_cb[mtvec] = &this_class::read_tvec; csr_wr_cb[mepc] = &this_class::write_epc; csr_rd_cb[mip] = &this_class::read_ip; csr_wr_cb[mip] = &this_class::write_null; csr_rd_cb[mie] = &this_class::read_ie; csr_wr_cb[mie] = &this_class::write_ie; csr_rd_cb[mhartid] = &this_class::read_hartid; csr_wr_cb[misa] = &this_class::write_null; csr_wr_cb[mvendorid] = &this_class::write_null; csr_wr_cb[marchid] = &this_class::write_null; csr_wr_cb[mimpid] = &this_class::write_null; if(FEAT & FEAT_CLIC) { csr_rd_cb[mtvt] = &this_class::read_csr_reg; csr_wr_cb[mtvt] = &this_class::write_csr_reg; csr_rd_cb[mxnti] = &this_class::read_csr_reg; csr_wr_cb[mxnti] = &this_class::write_csr_reg; csr_rd_cb[mintstatus] = &this_class::read_csr_reg; csr_wr_cb[mintstatus] = &this_class::write_null; csr_rd_cb[mscratchcsw] = &this_class::read_csr_reg; csr_wr_cb[mscratchcsw] = &this_class::write_csr_reg; csr_rd_cb[mscratchcswl] = &this_class::read_csr_reg; csr_wr_cb[mscratchcswl] = &this_class::write_csr_reg; csr_rd_cb[mintthresh] = &this_class::read_csr_reg; csr_wr_cb[mintthresh] = &this_class::write_intthresh; csr_rd_cb[mclicbase] = &this_class::read_csr_reg; csr_wr_cb[mclicbase] = &this_class::write_null; clic_base_addr=0xC0000000; clic_num_irq=16; clic_int_reg.resize(clic_num_irq); clic_cfg_reg=0x20; clic_info_reg = (/*CLICINTCTLBITS*/ 4U<<21) + clic_num_irq; mcause_max_irq=clic_num_irq+16; insert_mem_range(clic_base_addr, 0x5000UL, [this](phys_addr_t addr, unsigned length, uint8_t * const data) { return read_clic(addr.val, length, data);}, [this](phys_addr_t addr, unsigned length, uint8_t const * const data) {return write_clic(addr.val, length, data);}); } if(FEAT & FEAT_TCM) { tcm.resize(0x8000); std::function read_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t * const data) { auto offset=addr.val-0x10000000; std::copy(tcm.data() + offset, tcm.data() + offset + length, data); return iss::Ok; }; std::function write_clic_cb = [this](phys_addr_t addr, unsigned length, uint8_t const * const data) { auto offset=addr.val-0x10000000; std::copy(data, data + length, tcm.data() + offset); return iss::Ok; }; insert_mem_range(0x10000000, 0x8000UL, read_clic_cb, write_clic_cb); } if(FEAT & FEAT_DEBUG){ csr_wr_cb[dscratch0] = &this_class::write_dcsr_reg; csr_rd_cb[dscratch0] = &this_class::read_dcsr_reg; csr_wr_cb[dscratch1] = &this_class::write_dcsr_reg; csr_rd_cb[dscratch1] = &this_class::read_dcsr_reg; csr_wr_cb[dpc] = &this_class::write_dpc_reg; csr_rd_cb[dpc] = &this_class::read_dpc_reg; csr_wr_cb[dcsr] = &this_class::write_dcsr_dcsr; csr_rd_cb[dcsr] = &this_class::read_dcsr_reg; } } template std::pair riscv_hart_m_p::load_file(std::string name, int type) { FILE *fp = fopen(name.c_str(), "r"); if (fp) { std::array buf; auto n = fread(buf.data(), 1, 4, fp); if (n != 4) throw std::runtime_error("input file has insufficient size"); buf[4] = 0; if (strcmp(buf.data() + 1, "ELF") == 0) { fclose(fp); // Create elfio reader ELFIO::elfio reader; // Load ELF data if (!reader.load(name)) throw std::runtime_error("could not process elf file"); // check elf properties if (reader.get_class() != ELFCLASS32) if (sizeof(reg_t) == 4) throw std::runtime_error("wrong elf class in file"); if (reader.get_type() != ET_EXEC) throw std::runtime_error("wrong elf type in file"); if (reader.get_machine() != EM_RISCV) throw std::runtime_error("wrong elf machine in file"); auto entry = reader.get_entry(); for (const auto pseg : reader.segments) { const auto fsize = pseg->get_file_size(); // 0x42c/0x0 const auto seg_data = pseg->get_data(); if (fsize > 0) { auto res = this->write(iss::address_type::PHYSICAL, iss::access_type::DEBUG_WRITE, traits::MEM, pseg->get_physical_address(), fsize, reinterpret_cast(seg_data)); if (res != iss::Ok) LOG(ERR) << "problem writing " << fsize << "bytes to 0x" << std::hex << pseg->get_physical_address(); } } for(const auto sec : reader.sections) { if(sec->get_name() == ".symtab") { if ( SHT_SYMTAB == sec->get_type() || SHT_DYNSYM == sec->get_type() ) { ELFIO::symbol_section_accessor symbols( reader, sec ); auto sym_no = symbols.get_symbols_num(); std::string name; ELFIO::Elf64_Addr value = 0; ELFIO::Elf_Xword size = 0; unsigned char bind = 0; unsigned char type = 0; ELFIO::Elf_Half section = 0; unsigned char other = 0; for ( auto i = 0U; i < sym_no; ++i ) { symbols.get_symbol( i, name, value, size, bind, type, section, other ); if(name=="tohost") { tohost = value; } else if(name=="fromhost") { fromhost = value; } } } } else if (sec->get_name() == ".tohost") { tohost = sec->get_address(); fromhost = tohost + 0x40; } } return std::make_pair(entry, true); } throw std::runtime_error("memory load file is not a valid elf file"); } throw std::runtime_error("memory load file not found"); } template inline void riscv_hart_m_p::insert_mem_range(uint64_t base, uint64_t size, std::function rd_f, std::function wr_fn) { std::tuple entry{base, size}; auto it = std::upper_bound( memfn_range.begin(), memfn_range.end(), entry, [](std::tuple const& a, std::tuple const& b){ return std::get<0>(a)(b); }); auto idx = std::distance(memfn_range.begin(), it); memfn_range.insert(it, entry); memfn_read.insert(std::begin(memfn_read)+idx, rd_f); memfn_write.insert(std::begin(memfn_write)+idx, wr_fn); } template iss::status riscv_hart_m_p::read(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, uint8_t *const data) { #ifndef NDEBUG if (access && iss::access_type::DEBUG) { LOG(TRACEALL) << "debug read of " << length << " bytes @addr 0x" << std::hex << addr; } else if(access && iss::access_type::FETCH){ LOG(TRACEALL) << "fetch of " << length << " bytes @addr 0x" << std::hex << addr; } else { LOG(TRACE) << "read of " << length << " bytes @addr 0x" << std::hex << addr; } #endif try { switch (space) { case traits::MEM: { auto alignment = is_fetch(access)? (traits::MISA_VAL&0x100? 2 : 4) : length; if (unlikely(is_fetch(access) && (addr&(alignment-1)))) { fault_data = addr; if (is_debug(access)) throw trap_access(0, addr); this->trap_state = (1 << 31); // issue trap 0 return iss::Err; } try { if(!is_debug(access) && (addr&(alignment-1))){ this->trap_state = 1<<31 | 4<<16; fault_data=addr; return iss::Err; } auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr}); auto res = iss::Err; if(!is_fetch(access) && memfn_range.size()){ auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple const& a){ return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val; }); if(it!=std::end(memfn_range)) { auto idx = std::distance(std::begin(memfn_range), it); res = memfn_read[idx](phys_addr, length, data); } else res = read_mem( phys_addr, length, data); } else { res = read_mem( phys_addr, length, data); } if (unlikely(res != iss::Ok)){ this->trap_state = (1 << 31) | (5 << 16); // issue trap 5 (load access fault fault_data=addr; } return res; } catch (trap_access &ta) { this->trap_state = (1 << 31) | ta.id; fault_data=ta.addr; return iss::Err; } } break; case traits::CSR: { if (length != sizeof(reg_t)) return iss::Err; return read_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: { if ((addr + length) > mem.size()) return iss::Err; return iss::Ok; } break; case traits::RES: { auto it = atomic_reservation.find(addr); if (it != atomic_reservation.end() && it->second != 0) { memset(data, 0xff, length); atomic_reservation.erase(addr); } else memset(data, 0, length); } break; default: return iss::Err; // assert("Not supported"); } return iss::Ok; } catch (trap_access &ta) { this->trap_state = (1 << 31) | ta.id; fault_data=ta.addr; return iss::Err; } } template iss::status riscv_hart_m_p::write(const address_type type, const access_type access, const uint32_t space, const uint64_t addr, const unsigned length, const uint8_t *const data) { #ifndef NDEBUG const char *prefix = (access && iss::access_type::DEBUG) ? "debug " : ""; switch (length) { case 8: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint64_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 4: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint32_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 2: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << *(uint16_t *)&data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; case 1: LOG(TRACE) << prefix << "write of " << length << " bytes (0x" << std::hex << (uint16_t)data[0] << std::dec << ") @addr 0x" << std::hex << addr; break; default: LOG(TRACE) << prefix << "write of " << length << " bytes @addr " << addr; } #endif try { switch (space) { case traits::MEM: { if (unlikely((access && iss::access_type::FETCH) && (addr & 0x1) == 1)) { fault_data = addr; if (access && iss::access_type::DEBUG) throw trap_access(0, addr); this->trap_state = (1 << 31); // issue trap 0 return iss::Err; } try { if(length>1 && (addr&(length-1)) && (access&access_type::DEBUG) != access_type::DEBUG){ this->trap_state = 1<<31 | 6<<16; fault_data=addr; return iss::Err; } auto phys_addr = type==iss::address_type::PHYSICAL?phys_addr_t{access, space, addr}:BASE::v2p(iss::addr_t{access, type, space, addr}); auto res = iss::Err; if(access != access_type::FETCH && memfn_range.size()){ auto it = std::find_if(std::begin(memfn_range), std::end(memfn_range), [phys_addr](std::tuple const& a){ return std::get<0>(a)<=phys_addr.val && (std::get<0>(a)+std::get<1>(a))>phys_addr.val; }); if(it!=std::end(memfn_range)) { auto idx = std::distance(std::begin(memfn_range), it); res = memfn_write[idx]( phys_addr, length, data); } else res = write_mem( phys_addr, length, data); } else { res = write_mem( phys_addr, length, data); } if (unlikely(res != iss::Ok)) { this->trap_state = (1 << 31) | (7 << 16); // issue trap 7 (Store/AMO access fault) fault_data=addr; } return res; } catch (trap_access &ta) { this->trap_state = (1 << 31) | ta.id; fault_data=ta.addr; return iss::Err; } phys_addr_t paddr = BASE::v2p(iss::addr_t{access, type, space, addr}); if ((paddr.val + length) > mem.size()) return iss::Err; switch (paddr.val) { case 0x10013000: // UART0 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg uart_buf << (char)data[0]; if (((char)data[0]) == '\n' || data[0] == 0) { // LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send // '"<::CSR: { if (length != sizeof(reg_t)) return iss::Err; return write_csr(addr, *reinterpret_cast(data)); } break; case traits::FENCE: { if ((addr + length) > mem.size()) return iss::Err; switch (addr) { case 2: case 3: { ptw.clear(); auto tvm = state.mstatus.TVM; return iss::Ok; } } } break; case traits::RES: { atomic_reservation[addr] = data[0]; } break; default: return iss::Err; } return iss::Ok; } catch (trap_access &ta) { this->trap_state = (1 << 31) | ta.id; fault_data=ta.addr; return iss::Err; } } template iss::status riscv_hart_m_p::read_csr(unsigned addr, reg_t &val) { if (addr >= csr.size()) return iss::Err; auto req_priv_lvl = (addr >> 8) & 0x3; if (this->reg.PRIV < req_priv_lvl) // not having required privileges throw illegal_instruction_fault(this->fault_data); auto it = csr_rd_cb.find(addr); if (it == csr_rd_cb.end() || !it->second) // non existent register throw illegal_instruction_fault(this->fault_data); return (this->*(it->second))(addr, val); } template iss::status riscv_hart_m_p::write_csr(unsigned addr, reg_t val) { if (addr >= csr.size()) return iss::Err; auto req_priv_lvl = (addr >> 8) & 0x3; if (this->reg.PRIV < req_priv_lvl) // not having required privileges throw illegal_instruction_fault(this->fault_data); if((addr&0xc00)==0xc00) // writing to read-only region throw illegal_instruction_fault(this->fault_data); auto it = csr_wr_cb.find(addr); if (it == csr_wr_cb.end() || !it->second) // non existent register throw illegal_instruction_fault(this->fault_data); return (this->*(it->second))(addr, val); } template iss::status riscv_hart_m_p::read_csr_reg(unsigned addr, reg_t &val) { val = csr[addr]; return iss::Ok; } template iss::status riscv_hart_m_p::read_null(unsigned addr, reg_t &val) { val = 0; return iss::Ok; } template iss::status riscv_hart_m_p::write_csr_reg(unsigned addr, reg_t val) { csr[addr] = val; return iss::Ok; } template iss::status riscv_hart_m_p::read_cycle(unsigned addr, reg_t &val) { auto cycle_val = this->icount + cycle_offset; if (addr == mcycle) { val = static_cast(cycle_val); } else if (addr == mcycleh) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(cycle_val >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::write_cycle(unsigned addr, reg_t val) { if (sizeof(typename traits::reg_t) != 4) { if (addr == mcycleh) return iss::Err; mcycle_csr = static_cast(val); } else { if (addr == mcycle) { mcycle_csr = (mcycle_csr & 0xffffffff00000000) + val; } else { mcycle_csr = (static_cast(val)<<32) + (mcycle_csr & 0xffffffff); } } cycle_offset = mcycle_csr-this->icount; // TODO: relying on wrap-around return iss::Ok; } template iss::status riscv_hart_m_p::read_instret(unsigned addr, reg_t &val) { if ((addr&0xff) == (minstret&0xff)) { val = static_cast(this->instret); } else if ((addr&0xff) == (minstreth&0xff)) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(this->instret >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::write_instret(unsigned addr, reg_t val) { if (sizeof(typename traits::reg_t) != 4) { if ((addr&0xff) == (minstreth&0xff)) return iss::Err; this->instret = static_cast(val); } else { if ((addr&0xff) == (minstret&0xff)) { this->instret = (this->instret & 0xffffffff00000000) + val; } else { this->instret = (static_cast(val)<<32) + (this->instret & 0xffffffff); } } this->instret--; return iss::Ok; } template iss::status riscv_hart_m_p::read_time(unsigned addr, reg_t &val) { uint64_t time_val = this->icount / (100000000 / 32768 - 1); //-> ~3052; if (addr == time) { val = static_cast(time_val); } else if (addr == timeh) { if (sizeof(typename traits::reg_t) != 4) return iss::Err; val = static_cast(time_val >> 32); } return iss::Ok; } template iss::status riscv_hart_m_p::read_tvec(unsigned addr, reg_t &val) { val = csr[mtvec] & ~2; return iss::Ok; } template iss::status riscv_hart_m_p::read_status(unsigned addr, reg_t &val) { val = state.mstatus & hart_state_type::get_mask(); return iss::Ok; } template iss::status riscv_hart_m_p::write_status(unsigned addr, reg_t val) { state.write_mstatus(val); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::write_cause(unsigned addr, reg_t val) { csr[mcause] = val & ((1UL<<(traits::XLEN-1))| (mcause_max_irq-1)); return iss::Ok; } template iss::status riscv_hart_m_p::read_hartid(unsigned addr, reg_t &val) { val = mhartid_reg; return iss::Ok; } template iss::status riscv_hart_m_p::read_ie(unsigned addr, reg_t &val) { auto mask = get_irq_mask(); val = csr[mie] & mask; return iss::Ok; } template iss::status riscv_hart_m_p::write_ie(unsigned addr, reg_t val) { auto mask = get_irq_mask(); csr[mie] = (csr[mie] & ~mask) | (val & mask); check_interrupt(); return iss::Ok; } template iss::status riscv_hart_m_p::read_ip(unsigned addr, reg_t &val) { auto mask = get_irq_mask(); val = csr[mip] & mask; return iss::Ok; } template iss::status riscv_hart_m_p::write_epc(unsigned addr, reg_t val) { csr[addr] = val & get_pc_mask(); return iss::Ok; } template iss::status riscv_hart_m_p::write_dcsr_dcsr(unsigned addr, reg_t val) { if(!debug_mode_active()) throw illegal_instruction_fault(this->fault_data); // +-------------- ebreakm // | +---------- stepi // | | +++----- cause // | | ||| +- step csr[addr] = val & 0b1000100111000100U; return iss::Ok; } template iss::status riscv_hart_m_p::read_dcsr_reg(unsigned addr, reg_t &val) { if(!debug_mode_active()) throw illegal_instruction_fault(this->fault_data); val = csr[addr]; return iss::Ok; } template iss::status riscv_hart_m_p::write_dcsr_reg(unsigned addr, reg_t val) { if(!debug_mode_active()) throw illegal_instruction_fault(this->fault_data); csr[addr] = val; return iss::Ok; } template iss::status riscv_hart_m_p::read_dpc_reg(unsigned addr, reg_t &val) { if(!debug_mode_active()) throw illegal_instruction_fault(this->fault_data); val = this->reg.DPC; return iss::Ok; } template iss::status riscv_hart_m_p::write_dpc_reg(unsigned addr, reg_t val) { if(!debug_mode_active()) throw illegal_instruction_fault(this->fault_data); this->reg.DPC = val; return iss::Ok; } template iss::status riscv_hart_m_p::write_intthresh(unsigned addr, reg_t val) { csr[addr]= val &0xff; return iss::Ok; } template iss::status riscv_hart_m_p::read_mem(phys_addr_t paddr, unsigned length, uint8_t *const data) { if(mem_read_cb) return mem_read_cb(paddr, length, data); switch (paddr.val) { case 0x0200BFF8: { // CLINT base, mtime reg if (sizeof(reg_t) < length) return iss::Err; reg_t time_val; this->read_csr(time, time_val); std::copy((uint8_t *)&time_val, ((uint8_t *)&time_val) + length, data); } break; case 0x10008000: { const mem_type::page_type &p = mem(paddr.val / mem.page_size); uint64_t offs = paddr.val & mem.page_addr_mask; std::copy(p.data() + offs, p.data() + offs + length, data); if (this->icount > 30000) data[3] |= 0x80; } break; default: { for(auto offs=0U; offs iss::status riscv_hart_m_p::write_mem(phys_addr_t paddr, unsigned length, const uint8_t *const data) { if(mem_write_cb) return mem_write_cb(paddr, length, data); switch (paddr.val) { case 0x10013000: // UART0 base, TXFIFO reg case 0x10023000: // UART1 base, TXFIFO reg uart_buf << (char)data[0]; if (((char)data[0]) == '\n' || data[0] == 0) { // LOG(INFO)<<"UART"<<((paddr.val>>16)&0x3)<<" send // '"<::XLEN == 32 && paddr.val == (tohost + 4)) || (traits::XLEN == 64 && paddr.val == tohost); auto tohost_lower = (traits::XLEN == 32 && paddr.val == tohost) || (traits::XLEN == 64 && paddr.val == tohost); if (tohost_lower || tohost_upper) { uint64_t hostvar = *reinterpret_cast(p.data() + (tohost & mem.page_addr_mask)); if (tohost_upper || (tohost_lower && to_host_wr_cnt > 0)) { switch (hostvar >> 48) { case 0: if (hostvar != 0x1) { LOG(FATAL) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation"; } else { LOG(INFO) << "tohost value is 0x" << std::hex << hostvar << std::dec << " (" << hostvar << "), stopping simulation"; } this->trap_state=std::numeric_limits::max(); this->interrupt_sim=hostvar; break; //throw(iss::simulation_stopped(hostvar)); case 0x0101: { char c = static_cast(hostvar & 0xff); if (c == '\n' || c == 0) { LOG(INFO) << "tohost send '" << uart_buf.str() << "'"; uart_buf.str(""); } else uart_buf << c; to_host_wr_cnt = 0; } break; default: break; } } else if (tohost_lower) to_host_wr_cnt++; } else if ((traits::XLEN == 32 && paddr.val == fromhost + 4) || (traits::XLEN == 64 && paddr.val == fromhost)) { uint64_t fhostvar = *reinterpret_cast(p.data() + (fromhost & mem.page_addr_mask)); *reinterpret_cast(p.data() + (tohost & mem.page_addr_mask)) = fhostvar; } } } } return iss::Ok; } template iss::status riscv_hart_m_p::read_clic(uint64_t addr, unsigned length, uint8_t *const data) { if(addr==clic_base_addr) { // cliccfg *data=clic_cfg_reg; for(auto i=1; i=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+8)){ // clicinfo read_reg_uint32(addr, clic_info_reg, data, length); } else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0x40+clic_num_trigger*4)){ // clicinttrig auto offset = ((addr&0x7fff)-0x40)/4; read_reg_uint32(addr, clic_inttrig_reg[offset], data, length); } else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl auto offset = ((addr&0x7fff)-0x1000)/4; read_reg_uint32(addr, clic_int_reg[offset].raw, data, length); } else { for(auto i = 0U; i iss::status riscv_hart_m_p::write_clic(uint64_t addr, unsigned length, const uint8_t *const data) { if(addr==clic_base_addr) { // cliccfg clic_cfg_reg = *data; clic_cfg_reg&= 0x7e; // } else if(addr>=(clic_base_addr+4) && (addr+length)<=(clic_base_addr+4)){ // clicinfo // write_uint32(addr, clic_info_reg, data, length); } else if(addr>=(clic_base_addr+0x40) && (addr+length)<=(clic_base_addr+0xC0)){ // clicinttrig auto offset = ((addr&0x7fff)-0x40)/4; write_reg_uint32(addr, clic_inttrig_reg[offset], data, length); } else if(addr>=(clic_base_addr+0x1000) && (addr+length)<=(clic_base_addr+clic_num_irq*4)){ // clicintip/clicintie/clicintattr/clicintctl auto offset = ((addr&0x7fff)-0x1000)/4; write_reg_uint32(addr, clic_int_reg[offset].raw, data, length); } return iss::Ok; } template inline void riscv_hart_m_p::reset(uint64_t address) { BASE::reset(address); state.mstatus = hart_state_type::mstatus_reset_val; } template void riscv_hart_m_p::check_interrupt() { //auto ideleg = csr[mideleg]; // Multiple simultaneous interrupts and traps at the same privilege level are // handled in the following decreasing priority order: // external interrupts, software interrupts, timer interrupts, then finally // any synchronous traps. auto ena_irq = csr[mip] & csr[mie]; bool mie = state.mstatus.MIE; auto m_enabled = this->reg.PRIV < PRIV_M || (this->reg.PRIV == PRIV_M && mie); auto enabled_interrupts = m_enabled ? ena_irq : 0; if (enabled_interrupts != 0) { int res = 0; while ((enabled_interrupts & 1) == 0) { enabled_interrupts >>= 1; res++; } this->pending_trap = res << 16 | 1; // 0x80 << 24 | (cause << 16) | trap_id } } template uint64_t riscv_hart_m_p::enter_trap(uint64_t flags, uint64_t addr, uint64_t instr) { // flags are ACTIVE[31:31], CAUSE[30:16], TRAPID[15:0] // calculate and write mcause val auto trap_id = bit_sub<0, 16>(flags); auto cause = bit_sub<16, 15>(flags); // calculate effective privilege level unsigned new_priv = PRIV_M; if (trap_id == 0) { // exception if (cause == 11) cause = 0x8 + PRIV_M; // adjust environment call cause // store ret addr in xepc register csr[mepc] = static_cast(addr) & get_pc_mask(); // store actual address instruction of exception /* * write mtval if new_priv=M_MODE, spec says: * When a hardware breakpoint is triggered, or an instruction-fetch, load, * or store address-misaligned, * access, or page-fault exception occurs, mtval is written with the * faulting effective address. */ switch(cause){ case 0: csr[mtval] = static_cast(addr); break; case 2: csr[mtval] = (instr & 0x3)==3?instr:instr&0xffff; break; case 3: if((FEAT & FEAT_DEBUG) && (csr[dcsr] & 0x8000)) { this->reg.DPC = addr; csr[dcsr] = (csr[dcsr] & ~0x1c3) | (1<<6) | PRIV_M; //FIXME: cause should not be 4 (stepi) new_priv = this->reg.PRIV | PRIV_D; } else { csr[mtval] = addr; } break; case 4: case 6: csr[mtval] = fault_data; break; default: csr[mtval] = 0; } fault_data = 0; } else { csr[mepc] = this->reg.NEXT_PC & get_pc_mask(); // store next address if interrupt this->pending_trap = 0; } csr[mcause] = (trap_id << (traits::XLEN-1)) + cause; // update mstatus // xPP field of mstatus is written with the active privilege mode at the time // of the trap; the x PIE field of mstatus // is written with the value of the active interrupt-enable bit at the time of // the trap; and the x IE field of mstatus // is cleared // store the actual privilege level in yPP and store interrupt enable flags state.mstatus.MPP = PRIV_M; state.mstatus.MPIE = state.mstatus.MIE; state.mstatus.MIE = false; // get trap vector auto ivec = csr[mtvec]; // calculate addr// set NEXT_PC to trap addressess to jump to based on MODE // bits in mtvec this->reg.NEXT_PC = ivec & ~0x3UL; if ((ivec & 0x1) == 1 && trap_id != 0) this->reg.NEXT_PC += 4 * cause; // reset trap state this->reg.PRIV = new_priv; this->trap_state = 0; std::array buffer; #if defined(_MSC_VER) sprintf(buffer.data(), "0x%016llx", addr); #else sprintf(buffer.data(), "0x%016lx", addr); #endif if((flags&0xffffffff) != 0xffffffff) CLOG(INFO, disass) << (trap_id ? "Interrupt" : "Trap") << " with cause '" << (trap_id ? irq_str[cause] : trap_str[cause]) << "' (" << cause << ")" << " at address " << buffer.data() << " occurred"; return this->reg.NEXT_PC; } template uint64_t riscv_hart_m_p::leave_trap(uint64_t flags) { state.mstatus.MIE = state.mstatus.MPIE; state.mstatus.MPIE = 1; // sets the pc to the value stored in the x epc register. this->reg.NEXT_PC = csr[mepc] & get_pc_mask(); CLOG(INFO, disass) << "Executing xRET"; check_interrupt(); return this->reg.NEXT_PC; } } // namespace arch } // namespace iss #endif /* _RISCV_HART_M_P_H */