//////////////////////////////////////////////////////////////////////////////// // Copyright (C) 2017, MINRES Technologies GmbH // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // 1. Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // 2. Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // 3. Neither the name of the copyright holder nor the names of its contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Contributors: // eyck@minres.com - initial API and implementation //////////////////////////////////////////////////////////////////////////////// #include "fp_functions.h" extern "C" { #include "internals.h" #include "specialize.h" #include } #include using this_t = uint8_t*; const uint8_t rmm_map[] = { softfloat_round_near_even /*RNE*/, softfloat_round_minMag /*RTZ*/, softfloat_round_min /*RDN*/, softfloat_round_max /*RUP?*/, softfloat_round_near_maxMag /*RMM*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/, softfloat_round_max /*RTZ*/, }; const uint32_t quiet_nan32 = 0x7fC00000; extern "C" { uint32_t fget_flags() { return softfloat_exceptionFlags & 0x1f; } uint32_t fadd_s(uint32_t v1, uint32_t v2, uint8_t mode) { float32_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t r = f32_add(v1f, v2f); return r.v; } uint32_t fsub_s(uint32_t v1, uint32_t v2, uint8_t mode) { float32_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t r = f32_sub(v1f, v2f); return r.v; } uint32_t fmul_s(uint32_t v1, uint32_t v2, uint8_t mode) { float32_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t r = f32_mul(v1f, v2f); return r.v; } uint32_t fdiv_s(uint32_t v1, uint32_t v2, uint8_t mode) { float32_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t r = f32_div(v1f, v2f); return r.v; } uint32_t fsqrt_s(uint32_t v1, uint8_t mode) { float32_t v1f{v1}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t r = f32_sqrt(v1f); return r.v; } uint32_t fcmp_s(uint32_t v1, uint32_t v2, uint32_t op) { float32_t v1f{v1}, v2f{v2}; softfloat_exceptionFlags = 0; bool nan = (v1 & defaultNaNF32UI) == quiet_nan32 || (v2 & defaultNaNF32UI) == quiet_nan32; bool snan = softfloat_isSigNaNF32UI(v1) || softfloat_isSigNaNF32UI(v2); switch(op) { case 0: if(nan | snan) { if(snan) softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f32_eq(v1f, v2f) ? 1 : 0; case 1: if(nan | snan) { softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f32_le(v1f, v2f) ? 1 : 0; case 2: if(nan | snan) { softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f32_lt(v1f, v2f) ? 1 : 0; default: break; } return -1; } uint32_t fcvt_s(uint32_t v1, uint32_t op, uint8_t mode) { float32_t v1f{v1}; softfloat_exceptionFlags = 0; float32_t r; switch(op) { case 0: { // w->s, fp to int32 uint_fast32_t res = f32_to_i32(v1f, rmm_map[mode & 0x7], true); return (uint32_t)res; } case 1: { // wu->s uint_fast32_t res = f32_to_ui32(v1f, rmm_map[mode & 0x7], true); return (uint32_t)res; } case 2: // s->w r = i32_to_f32(v1); return r.v; case 3: // s->wu r = ui32_to_f32(v1); return r.v; } return 0; } uint32_t fmadd_s(uint32_t v1, uint32_t v2, uint32_t v3, uint32_t op, uint8_t mode) { // op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)} softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float32_t res = softfloat_mulAddF32(v1, v2, v3, op & 0x1); if(op > 1) res.v ^= 1ULL << 31; return res.v; } uint32_t fsel_s(uint32_t v1, uint32_t v2, uint32_t op) { softfloat_exceptionFlags = 0; bool v1_nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI; bool v2_nan = (v2 & defaultNaNF32UI) == defaultNaNF32UI; bool v1_snan = softfloat_isSigNaNF32UI(v1); bool v2_snan = softfloat_isSigNaNF32UI(v2); if(v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid); if(v1_nan || v1_snan) return (v2_nan || v2_snan) ? defaultNaNF32UI : v2; else if(v2_nan || v2_snan) return v1; else { if((v1 & 0x7fffffff) == 0 && (v2 & 0x7fffffff) == 0) { return op == 0 ? ((v1 & 0x80000000) ? v1 : v2) : ((v1 & 0x80000000) ? v2 : v1); } else { float32_t v1f{v1}, v2f{v2}; return op == 0 ? (f32_lt(v1f, v2f) ? v1 : v2) : (f32_lt(v1f, v2f) ? v2 : v1); } } } uint32_t fclass_s(uint32_t v1) { float32_t a{v1}; union ui32_f32 uA; uint_fast32_t uiA; uA.f = a; uiA = uA.ui; uint_fast16_t infOrNaN = expF32UI(uiA) == 0xFF; uint_fast16_t subnormalOrZero = expF32UI(uiA) == 0; bool sign = signF32UI(uiA); bool fracZero = fracF32UI(uiA) == 0; bool isNaN = isNaNF32UI(uiA); bool isSNaN = softfloat_isSigNaNF32UI(uiA); return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 | (sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 | (!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 | (!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9; } uint32_t fconv_d2f(uint64_t v1, uint8_t mode) { softfloat_roundingMode = rmm_map[mode & 0x7]; bool nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI; if(nan) { return defaultNaNF32UI; } else { float32_t res = f64_to_f32(float64_t{v1}); return res.v; } } uint64_t fconv_f2d(uint32_t v1, uint8_t mode) { bool nan = (v1 & defaultNaNF32UI) == defaultNaNF32UI; if(nan) { return defaultNaNF64UI; } else { softfloat_roundingMode = rmm_map[mode & 0x7]; float64_t res = f32_to_f64(float32_t{v1}); return res.v; } } uint64_t fadd_d(uint64_t v1, uint64_t v2, uint8_t mode) { bool nan = (v1 & defaultNaNF32UI) == quiet_nan32; bool snan = softfloat_isSigNaNF32UI(v1); float64_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t r = f64_add(v1f, v2f); return r.v; } uint64_t fsub_d(uint64_t v1, uint64_t v2, uint8_t mode) { float64_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t r = f64_sub(v1f, v2f); return r.v; } uint64_t fmul_d(uint64_t v1, uint64_t v2, uint8_t mode) { float64_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t r = f64_mul(v1f, v2f); return r.v; } uint64_t fdiv_d(uint64_t v1, uint64_t v2, uint8_t mode) { float64_t v1f{v1}, v2f{v2}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t r = f64_div(v1f, v2f); return r.v; } uint64_t fsqrt_d(uint64_t v1, uint8_t mode) { float64_t v1f{v1}; softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t r = f64_sqrt(v1f); return r.v; } uint64_t fcmp_d(uint64_t v1, uint64_t v2, uint32_t op) { float64_t v1f{v1}, v2f{v2}; softfloat_exceptionFlags = 0; bool nan = (v1 & defaultNaNF64UI) == quiet_nan32 || (v2 & defaultNaNF64UI) == quiet_nan32; bool snan = softfloat_isSigNaNF64UI(v1) || softfloat_isSigNaNF64UI(v2); switch(op) { case 0: if(nan | snan) { if(snan) softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f64_eq(v1f, v2f) ? 1 : 0; case 1: if(nan | snan) { softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f64_le(v1f, v2f) ? 1 : 0; case 2: if(nan | snan) { softfloat_raiseFlags(softfloat_flag_invalid); return 0; } else return f64_lt(v1f, v2f) ? 1 : 0; default: break; } return -1; } uint64_t fcvt_d(uint64_t v1, uint32_t op, uint8_t mode) { float64_t v1f{v1}; softfloat_exceptionFlags = 0; float64_t r; switch(op) { case 0: { // l->d, fp to int32 int64_t res = f64_to_i64(v1f, rmm_map[mode & 0x7], true); return (uint64_t)res; } case 1: { // lu->s uint64_t res = f64_to_ui64(v1f, rmm_map[mode & 0x7], true); return res; } case 2: // s->l r = i64_to_f64(v1); return r.v; case 3: // s->lu r = ui64_to_f64(v1); return r.v; } return 0; } uint64_t fmadd_d(uint64_t v1, uint64_t v2, uint64_t v3, uint32_t op, uint8_t mode) { // op should be {softfloat_mulAdd_subProd(2), softfloat_mulAdd_subC(1)} softfloat_roundingMode = rmm_map[mode & 0x7]; softfloat_exceptionFlags = 0; float64_t res = softfloat_mulAddF64(v1, v2, v3, op & 0x1); if(op > 1) res.v ^= 1ULL << 63; return res.v; } uint64_t fsel_d(uint64_t v1, uint64_t v2, uint32_t op) { softfloat_exceptionFlags = 0; bool v1_nan = (v1 & defaultNaNF64UI) == defaultNaNF64UI; bool v2_nan = (v2 & defaultNaNF64UI) == defaultNaNF64UI; bool v1_snan = softfloat_isSigNaNF64UI(v1); bool v2_snan = softfloat_isSigNaNF64UI(v2); if(v1_snan || v2_snan) softfloat_raiseFlags(softfloat_flag_invalid); if(v1_nan || v1_snan) return (v2_nan || v2_snan) ? defaultNaNF64UI : v2; else if(v2_nan || v2_snan) return v1; else { if((v1 & std::numeric_limits::max()) == 0 && (v2 & std::numeric_limits::max()) == 0) { return op == 0 ? ((v1 & std::numeric_limits::min()) ? v1 : v2) : ((v1 & std::numeric_limits::min()) ? v2 : v1); } else { float64_t v1f{v1}, v2f{v2}; return op == 0 ? (f64_lt(v1f, v2f) ? v1 : v2) : (f64_lt(v1f, v2f) ? v2 : v1); } } } uint64_t fclass_d(uint64_t v1) { float64_t a{v1}; union ui64_f64 uA; uint_fast64_t uiA; uA.f = a; uiA = uA.ui; uint_fast16_t infOrNaN = expF64UI(uiA) == 0x7FF; uint_fast16_t subnormalOrZero = expF64UI(uiA) == 0; bool sign = signF64UI(uiA); bool fracZero = fracF64UI(uiA) == 0; bool isNaN = isNaNF64UI(uiA); bool isSNaN = softfloat_isSigNaNF64UI(uiA); return (sign && infOrNaN && fracZero) << 0 | (sign && !infOrNaN && !subnormalOrZero) << 1 | (sign && subnormalOrZero && !fracZero) << 2 | (sign && subnormalOrZero && fracZero) << 3 | (!sign && infOrNaN && fracZero) << 7 | (!sign && !infOrNaN && !subnormalOrZero) << 6 | (!sign && subnormalOrZero && !fracZero) << 5 | (!sign && subnormalOrZero && fracZero) << 4 | (isNaN && isSNaN) << 8 | (isNaN && !isSNaN) << 9; } uint64_t fcvt_32_64(uint32_t v1, uint32_t op, uint8_t mode) { float32_t v1f{v1}; softfloat_exceptionFlags = 0; float64_t r; switch(op) { case 0: // l->s, fp to int32 return f32_to_i64(v1f, rmm_map[mode & 0x7], true); case 1: // wu->s return f32_to_ui64(v1f, rmm_map[mode & 0x7], true); case 2: // s->w r = i32_to_f64(v1); return r.v; case 3: // s->wu r = ui32_to_f64(v1); return r.v; } return 0; } uint32_t fcvt_64_32(uint64_t v1, uint32_t op, uint8_t mode) { softfloat_exceptionFlags = 0; float32_t r; switch(op) { case 0: { // wu->s int32_t r = f64_to_i32(float64_t{v1}, rmm_map[mode & 0x7], true); return r; } case 1: { // wu->s uint32_t r = f64_to_ui32(float64_t{v1}, rmm_map[mode & 0x7], true); return r; } case 2: // l->s, fp to int32 r = i64_to_f32(v1); return r.v; case 3: // wu->s r = ui64_to_f32(v1); return r.v; } return 0; } uint32_t unbox_s(uint64_t v) { constexpr uint64_t mask = std::numeric_limits::max() & ~((uint64_t)std::numeric_limits::max()); if((v & mask) != mask) return 0x7fc00000; else return v & std::numeric_limits::max(); } }